The conformational stabilities of two homodimeric class mu glutathione transferases (GSTM1-1 and GSTM2-2) were studied by urea- and guanidinium chloride-induced denaturation. Unfolding is reversible and structural changes were followed with far-ultraviolet circular dichroism, tryptophan fluorescence, enzyme activity, chemical cross-linking, and size-exclusion chromatography. Disruption of secondary structure occurs as a monophasic transition and is independent of protein concentration. Changes in tertiary structure occur as two transitions; the first is protein concentration dependent, while the second is weakly dependent (GSTM1-1) or independent (GSTM2-2). The second transition corresponds with the secondary structure transition. Loss in catalytic activity occurs as two transitions for GSTM1-1 and as one transition for GSTM2-2. These transitions are dependent upon protein concentration. The first deactivation transition coincides with the first tertiary structure transition. Dimer dissociation occurs prior to disruption of secondary structure. The data suggest that the equilibrium unfolding/refolding of the class mu glutathione transferases M1-1 and M2-2 proceed via a three-state process: N(2) <--> 2I <--> 2U. Although GSTM1-1 and GSTM2-2 are homologous (78% identity/94% homology), their N(2) tertiary structures are not identical. Dissociation of the GSTM1-1 dimer to structured monomers (I) occurs at lower denaturant concentrations than for GSTM2-2. The monomeric intermediate for GSTM1-1 is, however, more stable than the intermediate for GSTM2-2. The intermediates are catalytically inactive and display nativelike secondary structure. Guanidinium chloride-induced denaturation yields monomeric intermediates, which have a more loosely packed tertiary structure displaying enhanced solvent exposure of its tryptophans and enhanced ANS binding. The three-state model for the class mu enzymes is in contrast to the equilibrium two-state models previously proposed for representatives of classes alpha/pi/Sj26 GSTs. Class mu subunits appear to be intrinsically more stable than those of the other GST classes.
Cytosolic glutathione (GSH) transferases (GSTs) exist as stable homo- and heterodimers. Interactions at the subunit interface serve an important role in stabilizing the subunit tertiary structures of all GSH transferases. In addition, the dimer is required to maintain functional conformations at the active site on each subunit and the nonsubstrate ligand binding site at the dimer interface [Dirr, H. W. (2001) Chem.-Biol. Interact. 133, 19-23]. In this study, we report on the contribution of a specific intersubunit hydrophobic motif in rGSTM1-1 to dimer stability and protein function. The motif consists of the side chain of F56 from one subunit intercalated between helices 4 and 5 of the second subunit. Replacement of F56 with the hydrophilic side chains of serine, arginine, and glutamate results in a change in the structure of the active site, a marked diminution in catalytic efficiency, and alterations in the ability to bind nonsubstrate ligands. The mutations also affect the ability of the enzyme to bind GSH and the substrate analogue glutathione sulfonate. The functionality of rGSTM1-1 was disrupted to the greatest extent for the F56E mutant. Though mutations at this position do not alter the three-state equilibrium folding process for rGSTM1-1 (i.e., N(2) <--> 2I <--> 2U), destabilizing mutations at position 56 shift the equilibrium between the folded dimer (N(2)) and the monomeric intermediate (I) toward the latter conformational state. The transition to the unfolded state (U) is not significantly affected. The folded monomeric intermediate is also observed by electrospray ionization mass spectrometry. The amount of the intermediate is dependent on protein concentration and the residue at position 56. Mutations at position 56 have little impact on the secondary structure and stability of the monomeric folding intermediate. The dimerization process is proposed to induce a conformational change in the loop containing F56, resulting in improved stability and increased affinity between the M1 subunits.
Solvent-induced equilibrium unfolding of a homodimeric class sigma glutathione transferase (GSTS1-1, EC 2.5.1.18) was characterized by tryptophan fluorescence, anisotropy, enzyme activity, 8-anilino-1-naphthalenesulfonate (ANS) binding, and circular dichroism. Urea induces a triphasic unfolding transition with evidence for two well-populated thermodynamically stable intermediate states of GSTS1-1. The first unfolding transition is protein concentration independent and involves a change in the subunit tertiary structure yielding a partially active dimeric intermediate (i.e., N2 left and right arrow I2). This is followed by a protein concentration dependent step in which I2 dissociates into compact inactive monomers (M) displaying enhanced hydrophobicity. The third unfolding transition, which is protein concentration independent, involves the complete unfolding of the monomeric state. Increasing NaCl concentrations destabilize N2 and appear to shift the equilibrium toward I2 whereas the stability of the monomeric intermediate M is enhanced. The binding of substrate or product analogue (i.e., glutathione or S-hexylglutathione) to the protein's active site stabilizes the native dimeric state (N2), causing the first two unfolding transitions to shift toward higher urea concentrations. The stability of M was not affected. The data implicate a region at/near the active site in domain I (most likely alpha-helix 2) as being highly unstable/flexible which undergoes local unfolding, resulting initially in I2 formation followed by a disruption in quaternary structure to a monomeric intermediate. The unfolding/refolding pathway is compared with those observed for other cytosolic GSTs and discussed in light of the different structural features at the subunit interfaces, as well as the evolutionary selection of this GST as a lens crystallin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.