A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution profiles than the slowly frozen aggregate powder. Results indicated that micronized SFL inclusion complex powders dissolved faster in aqueous dissolution media than inclusion complexes formed by conventional techniques due to higher surface areas and stabilized inclusion complexes obtained by ultra-rapid freezing.
The purpose of this study was to investigate the influence of micronization technique on performance and stability of the model drug formulated in a suspension-based pressurized metered-dose inhaler (pMDI). The model drug, triamcinolone acetonide (TAA), was subjected to ball milling or air-jet milling prior to formulation of the pMDI. The dose delivery characteristics of the emitted aerosol cloud were monitored for the ball-milled, air-jet-milled, and unmicronized TAA pMDI formulations prior to and after storage at 25 and 40 degrees C. Cascade impaction was used to determine the aerodynamic particle size distribution of the emitted dose. Both micronization techniques reduced the drug particle size distribution and the polydispersity of the drug particles to a similar extent, but the ball-milling technique reduced the crystallinity of the drug to a greater degree compared to the air-jet-milling technique. The air-jet-milled and unmicronized TAA pMDI displayed similar aerodynamic particle size distributions of the emitted aerosol and respirable fractions over the storage period. The ball-milled TAA resulted in a pMDI formulation with the smallest aerodynamically sized particles and the highest respirable fraction compared to the air-jet-milled or unmicronized TAA pMDI formulations. The micronization techniques significantly influenced the dose delivery characteristics as a result of different initial particle size distributions, amorphous contents, and surface energies.
The novel SFL technology was demonstrated to produce nanostructured amorphous highly porous particles of poorly water soluble APIs with significantly enhanced wetting and dissolution rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.