The potential for leukocyte-mediated host tissue damage during resolution of inflammatory responses is influenced by the rate at which extravasated apoptotic leukocytes are cleared from inflammatory sites. Regulation of macrophage capacity for clearance of apoptotic granulocytes is likely to be an important factor determining whether inflammation ultimately resolves or progresses to a chronic state. In this study we have investigated the molecular basis for rapid augmentation of macrophage phagocytosis of apoptotic neutrophils, which was observed following macrophage adhesion to fibronectin. We used a combination of monoclonal antibodies, blocking peptides, and recombinant fibronectin fragments to investigate the role of  1 integrins in mediating the fibronectin effects. Blockade of ␣ 5  1 or ␣ 4  1 alone did not attenuate fibronectin-augmentation of phagocytosis. In addition, adhesion of macrophages to recombinant fibronectins lacking ␣ 4  1 recognition motifs failed to promote phagocytosis of apoptotic neutrophils. Our results would be consistent with a model in which multiple fibronectin receptors, including  1 integrins, act co-operatively to augment macrophage phagocytic responses. Together, these data suggest that the extracellular matrix environment of macrophages may provide regulatory signals that act indirectly to rapidly alter the potential for removal of apoptotic cells and influence the process of resolution of inflammation. J. Leukoc. Biol. 64: 600-607; 1998.
Regulation of macrophage capacity to remove apoptotic cells may control the balance of apoptotic and necrotic leukocytes at inflamed foci and the extent of leukocyte-mediated tissue damage. Although the molecules involved in the phagocytic process are beginning to be defined, little is known about the underlying regulatory and signaling mechanisms controlling this process. In this paper, we have investigated the effects of treatment of human monocyte-derived macrophages with PGs and other agents that elevate intracellular cAMP on phagocytosis. PGE2 and PGD2 specifically reduced the proportion of macrophages that phagocytosed apoptotic cells. Similar results were obtained with the membrane-permeable cAMP analogues dibutyryl-cAMP and 8-bromo-cAMP but not with the cGMP analogue dibutyryl-GMP. Consistent with the observation that phagocytosis was inhibited by cAMP elevation, treatment of monocyte-derived macrophages with PGE2 resulted in rapid, transient increase in levels of intracellular cAMP. These effects were not due to nonspecific inhibition of monocyte-derived macrophage phagocytosis given that ingestion of Ig-opsonized erythrocytes was unaffected. Elevation of cAMP induced morphologic alterations indicative of changes in the adhesive status of the macrophage, including cell rounding and disassembly of structures that represent points of contact with substrate containing actin and talin. These results strongly suggest that rapid activation of cAMP signaling pathways by inflammatory mediators regulates processes that limit tissue injury and that modulation of cAMP levels represents an additional therapeutic target in the control of resolution of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.