In this paper we discuss the benefits of using rubber-modified asphalt concrete in high-speed railway foundations. We present the results from a series of three-dimensional finite element simulations modeling a high-speed train foundation utilizing various trackbed materials. Four trackbed materials were tested for their relative vibration attenuation capacities: ballast, concrete, conventional asphalt concrete, and rubber-modified asphalt concrete. Additionally, studies varying the speed and the weight of the passing train were performed. Parametric studies varying the dimensions of the trackbed underlayment were also examined. From these numerical simulations, it is shown that rubber-modified asphalt concrete outperforms other traditional paving materials in ground vibration attenuation. It is also shown that the speeds and weights of the passing trains and the dimensions of the trackbed have significant effects on the relative performance of the paving materials. Implications for design are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.