Over the last years, optical biosensors based on plasmonic nanomaterials have gained great scientific interest due to their unquestionable advantages compared to other biosensing technologies. They can achieve sensitive, direct, and label-free analysis with exceptional potential for multiplexing and miniaturization. Recently, it has been demonstrated the potential of using optical discs as high throughput nanotemplates for the development of plasmonic biosensors in a cost-effective way. This work is a pilot study focused on the development of an integrated plasmonic biosensor for the monitoring of cell adhesion and growth of human retinal pigmented cell line (ARPE-19) under different media conditions (0 and 2% of FBS). We observed an increase of the plasmonic band displacement under 2% FBS compared to 0% conditions over time (1, 3, and 5 h). These preliminary results show that the proposed plasmonic biosensing approach is a direct, non-destructive, and real-time tool that could be employed in the study of living cells behavior and culture conditions. Furthermore, this setup could assess the viability of the cells and their growth over time with low variability between the technical replicates improving the experimental replicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.