This study characterizes the causal relationship between peripheral polymorphonuclear leukocyte (PMNL) priming, systemic oxidative stress (OS), and inflammation in patients with varying degrees of renal insufficiency (chronic kidney disease [CKD] not on renal replacement therapy [RRT]: continuous ambulatory peritoneal dialysis or hemodialysis [HD]) and healthy control subjects. Rate of superoxide release was measured after stimulation of PMNL with phorbol 12-myristate 13-acetate or zymosan. Priming was estimated by the rate of superoxide release after phorbol 12-myristate 13-acetate stimulation. Systemic OS was related to PMNL priming and intracellular myeloperoxidase activity. Inflammation was linked to peripheral white blood cells and PMNL counts, PMNL apoptosis, and PMNL ex vivo survival in autologous and heterologous sera. PMNL priming and counts were related to the severity of renal failure in CKD not on RRT. Compared with control subjects, PMNL from all CKD patients showed increased priming, highest in HD, with a significant decrease in their response to zymosan. PMNL myeloperoxidase activity and apoptosis were increased in all renal failure patients. Decreased ex vivo cell survival and elevated leukocyte counts were found in all patients, highest in HD. Both PMNL priming and counts correlated negatively with the GFR. A positive significant correlation was shown between PMNL counts and their priming in all groups, suggesting that the increased PMNL count in peripheral blood is an adaptive response to PMNL priming. Hence, PMNL priming is a key mediator of low-grade inflammation and OS associated with renal failure, occurring before the onset of RRT and further augmented in chronic HD.
Oxidative stress and inflammation have recently been linked to endothelial damage in essential hypertension (EH). Activated peripheral polymorphonuclear leukocytes (PMN) damage surrounding tissue by releasing reactive oxygen species (ROS) and proteolytic enzymes before self-necrosis. PMN necrosis further exacerbates inflammation and promotes chemotaxis and PMN recruitment. The number and properties of PMN from untreated EH patients is the focus of the present study. Oxidative stress was assessed by measuring the rate of superoxide anion release from separated, phorbol ester-stimulated PMN and the redox state of plasma glutathione. Inflammation was estimated indirectly by determining PMN number and their in vitro survival. PMN from EH patients (n = 37) released superoxide anion faster (P < .0001) than those of normotensives (NC, n = 37), 17.7 +/- 1.14 v 9.54 +/- 0.51 nmol/10 min/10(6) cells. The redox state of glutathione was twofold higher in EH plasma (P < .02) indicating systemic oxidative stress. PMN survival in vitro correlates linearly with the rate of superoxide release (r2 = 0.60, P < .02) and PMN count of EH patients, although in the normal range, were significantly higher (P < .0001), indicating necrosis and recruitment. Hypertensive plasma significantly reduced NC PMN viability, whereas normal plasma significantly increased EH PMN viability. What our studies show is that EH is accompanied by a primed state PMN that does not correlate with the levels of blood pressure. PMN priming in EH patients reflects an in vivo exposure to a constant stimulus ending in oxidative stress, increased self-necrosis, and cell recruitment. Oxidative stress and inflammation will result in endothelial damage and atherosclerosis in the long run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.