Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 years of the Cluster search-coil magnetometer (SCM) waveforms measured in the solar wind and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180]Hz. We show that a large fraction of the spectra exhibit clear breakpoints near the electron gyroscale ρ e , followed by steeper power-law like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that will be discussed in detail. We compare our results to those reported in other studies and discuss their implication on the physical mechanisms and the theoretical modeling of energy dissipation in the SW.
In collisionless plasmas, turbulence is thought to play an important role in mass transport and energy dissipation. Magnetic fluctuations in the Jovian magnetosphere are essential in a turbulent state. Previous studies of that turbulence have focused on the large scales using low time resolution of magnetic field data. Here we extend those studies to cover a wider range of scales by combining both low and high-time-resolution data of Galileo magnetometer. We use particle data from the plasma instrument and include energetic particle contributions to estimate the local plasma parameters. We obtain 11 power spectra of magnetic field in the frequency range of 10 À4 -1 Hz, which covers both magnetohydrodynamics and ion kinetic scales. The frequencies of the evidenced spectral breaks are found to be relatively well correlated with the characteristic scales of heavy ion. The spectral indices below and above the spectral breaks are found to be broad and cover the ranges of 0.6-1.9 and 1.7-2.5, respectively. An analysis of higher-order statistics shows an intermittent feature of the turbulence, found to be more prominent in the plasma sheet than in the lobe. Furthermore, a statistical survey of the power of the fluctuations using low-time-resolution data suggests a radially varying dawn-dusk asymmetry: the total power is larger in the duskside (dawnside) at <50 R J (>80 R J ), which would reflect flow shear and global magnetospheric activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.