Seismic investigation in marine gas-bearing sediments fails to get information below the acoustic mask created by free gas. To circumvent this problem, we combined collocated multichannel ultra-high resolution seismic imaging, marine electrical resistivity tomography (MERT) and core sampling to study the physical properties of gas-bearing sediments in the Bay of Concarneau (France). We obtained sections of compression (P-) wave velocitvalues where free gas was identified in seismic data. We tested a joint processing workflow combining the 1D inversion of the MERT data with the 2D P-wave velocity through a structural coupling between resistivity and velocity. We obtained a series of 2D resistivity models fitting the data whilst in agreement with. The resulting models showed the continuity of the geological units below the acoustic gas fronts which is associated with paleo-valley sediment infilling. We were able to demonstrate relationships between resistivity and velocity differing from superficial to deeper sediments. We established these relationships at the geophysical scale then compared the results to data from core sampliand porosity). We inferred the porosity distribution from the MERT data. At the core locations, we observed a good agreement between this geophysical scale porosity and the core data both within and outside the gas-bearing sediments. This agreement demonstrated that resistivity could be used as a proxy for porosity where no was available below gas caps. In these regions, the observed low resistivity showed a high porosity (60-70%) down to about 10-20 m in depth in contrast with the surrounding medium with porosity less than 55%. These results support the hypothesis that failures inside the paleo-valley sediment could control the gas migration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.