Highlights d Proteomics define the NSC niche-specific extracellular matrix d Detergent-solubility profiling reveals extracellular matrix architecture d Transglutaminase 2 regulates neurogenesis d Stiffness is increased in the neurogenic niches of the brain
Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock‐in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV‐based strategy carrying intein‐split‐dCas9 in combination with activators (AAV‐dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single‐cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6‐OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV‐dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.