When suspensions are exposed to shear forces, the particles may form ordered structures depending on their shapes, concentrations, and the material. For some processes, e.g., for wet-film coating, it is important to know how fast these structures form in shear fields and for how long the structures persist when the shear is relaxed. To obtain information on the particle structure formation and the decay time, the effective viscosity of nematic suspensions of Na-hectorite nanosheets was investigated by rheology employing a cone-plate measurement geometry. The necessary time for the formation textured nematic films could be deduced by carrying out effective viscosity measurements at constant time steps. Information could also be obtained on the lifetime of the platelet textures when shear is relaxed. All this information was employed to identify geometrical requirements for slot dies to produce barrier liners with nanosheet layers oriented parallel to PET substrates. Thereby, we obtained green and simple coatings that are in line with state-of-the-art high-performance materials such as metalized plastic foils in terms of oxygen barrier properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.