Pulmonary hypertension (PH) is a heterogeneous condition. To date, no registry data exists reflecting the spectrum of disease across the five diagnostic groups encountered in a specialist referral centre.Data was retrieved for consecutive, treatment-naïve cases diagnosed between 2001 and 2010 using a catheter-based approach. 1,344 patients were enrolled, with a mean follow-up of 2.9 yrs.The 3-yr survival was 68% for pulmonary arterial hypertension (PAH), 73% for PH associated with left heart disease, 44% for PH associated with lung disease (PH-lung), 71% for chronic thromboembolic PH (CTEPH) and 59% for miscellaneous PH. Compared with PAH, survival was inferior in PH-lung and superior in CTEPH (p,0.05). Multivariate analysis demonstrated that diagnostic group independently predicted survival. Within PAH, Eisenmenger's survival was superior to idiopathic PAH, which was superior to PAH associated with systemic sclerosis (p,0.005). Within PH-lung, 3-yr survival in sleep disorders/alveolar hypoventilation (90%) was superior to PH-lung with chronic obstructive pulmonary disease (41%) and interstitial lung disease (16%) (p,0.05). In CTEPH, long-term survival was best in patients with surgically accessible disease undergoing pulmonary endarterectomy.In this large registry of consecutive, treatment-naïve patients identified at a specialist PH centre, outcomes and characteristics differed between and within PH groups. The current system of classification of PH has prognostic value even when adjusted for age and disease severity, emphasising the importance of systematic evaluation and precise classification.
The phenotype and outcome of severe pulmonary hypertension in chronic obstructive pulmonary disease (COPD) is described in small numbers, and predictors of survival are unknown. Data was retrieved for 101 consecutive, treatment-naïve cases of pulmonary hypertension in COPD.Mean¡SD follow-up was 2.3¡1.9 years. 59 patients with COPD and severe pulmonary hypertension, defined by catheter mean pulmonary artery pressure o40 mmHg, had significantly lower carbon monoxide diffusion, less severe airflow obstruction but not significantly different emphysema scores on computed tomography compared to 42 patients with mild-moderate pulmonary hypertension. 1-and 3-year survival for severe pulmonary hypertension, at 70% and 33%, respectively, was inferior to 83% and 55%, respectively, for mild-moderate pulmonary hypertension. Mixed venous oxygen saturation, carbon monoxide diffusion, World Health Organization functional class and age, but not severity of airflow obstruction, were independent predictors of outcome. Compassionate treatment with targeted therapies in 43 patients with severe pulmonary hypertension was not associated with a survival benefit, although improvement in functional class and/or fall in pulmonary vascular resistance .20% following treatment identified patients with improved survival.Standard prognostic markers in COPD have limited value in patients with pulmonary hypertension. This study identifies variables that predict outcome in this phenotype. Despite poor prognosis, our data suggest that further evaluation of targeted therapies is warranted.
Rationale: Pulmonary arterial hypertension (PAH) is a life-shortening condition. The European Society of Cardiology and European Respiratory Society and the REVEAL (North American Registry to Evaluate Early and Long-Term PAH Disease Management) risk score calculator (REVEAL 2.0) identify thresholds to predict 1-year mortality. Objectives: This study evaluates whether cardiac magnetic resonance imaging (MRI) thresholds can be identified and used to aid risk stratification and facilitate decision-making. Methods: Consecutive patients with PAH ( n = 438) undergoing cardiac MRI were identified from the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Center) MRI database. Thresholds were identified from a discovery cohort and evaluated in a test cohort. Measurements and Main Results: A percentage-predicted right ventricular end-systolic volume index threshold of 227% or a left ventricular end-diastolic volume index of 58 ml/m 2 identified patients at low (<5%) and high (>10%) risk of 1-year mortality. These metrics respectively identified 63% and 34% of patients as low risk. Right ventricular ejection fraction >54%, 37–54%, and <37% identified 21%, 43%, and 36% of patients at low, intermediate, and high risk, respectively, of 1-year mortality. At follow-up cardiac MRI, patients who improved to or were maintained in a low-risk group had a 1-year mortality <5%. Percentage-predicted right ventricular end-systolic volume index independently predicted outcome and, when used in conjunction with the REVEAL 2.0 risk score calculator or a modified French Pulmonary Hypertension Registry approach, improved risk stratification for 1-year mortality. Conclusions: Cardiac MRI can be used to risk stratify patients with PAH using a threshold approach. Percentage-predicted right ventricular end-systolic volume index can identify a high percentage of patients at low-risk of 1-year mortality and, when used in conjunction with current risk stratification approaches, can improve risk stratification. This study supports further evaluation of cardiac MRI in risk stratification in PAH.
BackgroundCardiovascular Magnetic Resonance (CMR) imaging is accurate and reproducible for the assessment of right ventricular (RV) morphology and function. However, the diagnostic accuracy of CMR derived RV measurements for the detection of pulmonary hypertension (PH) in the assessment of patients with suspected PH in the clinic setting is not well described.MethodsWe retrospectively studied 233 consecutive treatment naïve patients with suspected PH including 39 patients with no PH who underwent CMR and right heart catheterisation (RHC) within 48hours. The diagnostic accuracy of multiple CMR measurements for the detection of mPAP ≥ 25 mmHg was assessed using Fisher’s exact test and receiver operating characteristic (ROC) analysis.ResultsVentricular mass index (VMI) was the CMR measurement with the strongest correlation with mPAP (r = 0.78) and the highest diagnostic accuracy for the detection of PH (area under the ROC curve of 0.91) compared to an ROC of 0.88 for echocardiography calculated mPAP. Late gadolinium enhancement, VMI ≥ 0.4, retrograde flow ≥ 0.3 L/min/m2 and PA relative area change ≤ 15% predicted the presence of PH with a high degree of diagnostic certainty with a positive predictive value of 98%, 97%, 95% and 94% respectively. No single CMR parameter could confidently exclude the presence of PH.ConclusionCMR is a useful alternative to echocardiography in the evaluation of suspected PH. This study supports a role for the routine measurement of ventricular mass index, late gadolinium enhancement and the use of phase contrast imaging in addition to right heart functional indices in patients undergoing diagnostic CMR evaluation for suspected pulmonary hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.