In spite of increasing evidence that
parasitic worms may protect
humans from developing allergic and autoimmune diseases and the continuing
identification of defined helminth-derived immunomodulatory molecules,
to date no new anti-inflammatory drugs have been developed from these
organisms. We have approached this matter in a novel manner by synthesizing
a library of drug-like small molecules based upon phosphorylcholine,
the active moiety of the anti-inflammatory Acanthocheilonema
viteae product, ES-62, which as an immunogenic protein
is unsuitable for use as a drug. Following preliminary in vitro screening
for inhibitory effects on relevant macrophage cytokine responses,
a sulfone-containing phosphorylcholine analogue (11a)
was selected for testing in an in vivo model of inflammation, collagen-induced
arthritis (CIA). Testing revealed that 11a was as effective
as ES-62 in protecting DBA/1 mice from developing CIA and mirrored
its mechanism of action in downregulating the TLR/IL-1R transducer,
MyD88. 11a is thus a novel prototype for anti-inflammatory
drug development.
Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.
Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1β was the most down-regulated gene. Consistent with this, IL-1β was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1β by macrophages derived from the bone marrow of NRF2−/− mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA.
ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, exhibits anti-inflamma-tory properties by virtue of covalently attached phosphorylcholine moieties. Screening of a library of ES-62 phosphorylcholine-based small molecule analogues (SMAs) revealed that two compounds, termed 11a and 12b, mirrored the helminth product both in inhibiting mast cell degranulation and cytokine responses in vitro and in preventing ovalbumin-induced Th2-associated airway inflammation and eosin- ophil infiltration of the lungs in mice. Furthermore, the two SMAs inhibited neutrophil infiltration of the lungs when administered therapeutically. ES-62-SMAs 11a and 12b thus represent starting points for novel drug development for allergies such as asthma
The
treatment of Human African trypanosomiasis remains a major
unmet health need in sub-Saharan Africa. Approaches involving new
molecular targets are important; pteridine reductase 1 (PTR1), an
enzyme that reduces dihydrobiopterin in Trypanosoma spp., has been identified as a candidate target, and it has been
shown previously that substituted pyrrolo[2,3-d]pyrimidines
are inhibitors of PTR1 from Trypanosoma brucei (J. Med. Chem.2010, 53, 221–229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal
structures of 23 of these compounds complexed with PTR1, and evaluated
in screens for enzyme inhibitory activity against PTR1 and in vitro
antitrypanosomal activity. Eight compounds were sufficiently active
in both screens to take forward to in vivo evaluation. Thus, although
evidence for trypanocidal activity in a stage I disease model in mice
was obtained, the compounds were too toxic to mice for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.