BACKGROUND-A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined.
The purpose of this study was to determine whether long-term modulation of inflammatory activity by tumor necrosis factor (TNF)-α inhibitors has some influence on insulin resistance (IR). 16 active rheumatoid arthritis (RA) patients without CV risk factors treated with anti-TNF-α agents were included in this study. RA activity by disease activity score 28, IR by HOMA2-IR, body composition by impedance analysis, physical activity by accelerometry, abdominal fat distribution by magnetic resonance imaging, and serum level of key adipokines by ELISA were measured at baseline and during a 1-year follow-up period. Patient body mass index increased significantly (26.94 ± 3.88 vs. 28.06 ± 4.57 kg/m2, p=0.02) after 1 year of treatment. Body composition, in terms of fat and fat-free mass, remained unchanged except for a significant elevation in body cell mass (25.50 ± 4.60 vs. 26.60 ± 3.17 kg, p=0.02). Basal levels of IR in the RA patients included in this study were significantly higher than healthy controls (1.6 ± 0.8 vs. 1.11 ± 0.56, p=0.011) but did not change during the follow-up. Nor did basal concentrations of adiponectin, visfatin, leptin, ghrelin, resistin, and apelin in response to anti-TNF-α treatment; only retinol-binding protein 4, showed a significant increase (51.7 ± 32.7 vs. 64.9 ± 28.4 μg/ml, p=0.03) at the end of the study. IR, adiposity distribution, and serum levels of most adipokines are not significantly affected by long-term inhibition of TNF-α in RA patients. Our data suggest that although systemic blockade of TNF-α exerts an anticachectic effect in RA patients, it does not seem to play a major role in IR.
The neuropeptide somatostatin (SS) plays a role as a modulator of cognitive functions and as a potential tropic factor in the central nervous system. A reduction in SS levels has been demonstrated in the aging brain and in dementia. In addition, insulin-like growth factor I (IGF-I) acts as a paracrine factor in multiple GH actions and is also found in the cerebral hemispheres, where it exerts neurotropic effects. We used aging rats as an in vivo model of GH deficiency to study the possible participation of exogenous GH in the modulation of the cerebral hemispheric SS and IGF-I. Two sets of experiments were carried out. In the first set, the age-related patterns of GH, IGF-I, and SS in the serum, pituitary, and cerebral hemispheres were established. In the second experimental set, 90-day-old (adult) and 2-yr-old (aging) male rats received recombinant human GH (200 micrograms/ sc-day) or vehicle for 7 consecutive days. The serum levels of rat GH and IGF-I as well as pituitary GH messenger RNA decreased in 2-yr-old rats compared with those in adult rats. After GH treatment, pituitary GH messenger RNA levels decreased markedly in the 90-day-old and 2-yr-old rats. Serum immunoreactive GH decreased in the adult animals, whereas it remained unaffected in the aging ones, whereas serum IGF-I levels were not altered by GH treatment in either group. Immunoreactive levels and messenger RNA of both SS and IGF-I were low in the cerebral hemispheres of aging rats, but were restored to the levels found in adult rats after GH treatment. As treatment did not induce changes in the serum IGF-I levels, these results provide evidence of a stimulatory action of peripherally administered GH on the regulation of SS and IGF-I genes in the aging rat in the central nervous system. These data also show a new target action for GH and could provide a molecular basis for the improvement of some symptoms of GH deficiency that occurs after recombinant human GH treatment.
There has been increasing experimental evidence to suggest that insulin-like growth factor 1 (IGF-I) may be one of the essential regulators in the reproductive system of the rat. IGF-I is synthesized in the hypothalamus and IGF-I immunoreactivity increases during puberty. Consequently we hypothesized that centrally located IGF-I might contribute to the initiation of puberty. Centrally located IGF-I was immunoneutralized to assess this hypothesis. Male Wistar rats, 28 days old, were infused intracerebroventricularly with specific purified IgGs from rabbit IGF-I antiserum (IGF-I-Ab). The intracerebroventricular administration of IGF-I-Ab resulted in a reduction in testicular weight and consequently in delayed pubertal development. There was also a reduction in serum testosterone, pituitary immunoreactive (IR) luteinizing hormone (LH) and serum IR follicle-stimulating hormone (FSH). The accumulation of βLH mRNA was not modified, whereas βFSH mRNA was increased. An increment in the serum growth hormone (GH) levels was also observed. There were no significant alterations in hypothalamic IR growth hormone releasing factor content, although IR somatostatin (SRIH) content was increased by IGF-I-Ab. The body weight gain remained unaltered. As a whole, our study suggests that centrally located IGF-I influences pubertal development, production and release of gonadotropins and supports the finding that endogenous centrally located IGF-I plays a role at the initiation of puberty in the male rat. It also gives support to the physiological role of centrally located IGF-I in the release of GH mediated by hypothalamic SRIH at the initiation of puberty.
Diphenylamine-based nonsteroidal antiinflammatory drugs (NSAIDs) are able to cause in vitro the shedding of L-selectin. The aim of this work was to determine the physiologic relevance of L-selectin shedding in the antiinflammatory effect exerted by NSAIDs in vivo. Chemical compounds structurally related to NSAIDs -including diphenylamine, N-phenylanthranilic acid (N-Ph), diphenylacetic acid -as well as the traditional NSAID indomethacin were studied using the zymosan air-pouch mouse model. Animals intramuscularly pretreated with indomethacin or N-Ph, but not with diphenylamine or diphenylacetic acid, showed a significant dose-dependent reduction in the number of neutrophils compared with untreated animals (N-Ph, IC50 = 6.7 mg/kg). Except for indomethacin, none of these compounds caused any significant reduction in cyclooxygenase-1 activity in vivo. In flow chamber experiments, N-Ph reduced the capability of human neutrophils to pass across the endothelial barrier by interfering with leukocyte rolling step on HUVEC. N-Ph, but not diphenylacetic acid, induced activationindependent L-selectin shedding in mouse neutrophils. Interestingly, N-Ph exerted an antiinflammatory effect similar to that of the anti-L-selectin blocking antibody Mel-14, although no additive action was observed when both compounds were combined. These data suggest that the L-selectin shedding induced by NSAIDs may be involved in the antiinflammatory action exerted by these compounds in clinical settings. Keywords:Air-pouch mouse model r L-selectin r Nonsteroidal antiinflammatory drugs r N-phenylanthranilic acid See accompanying Commentary by Zarbock and RossaintCorrespondence: Prof. Federico Díaz-González e-mail: federico.diaz.gonzalez@gmail.com IntroductionThe recruitment of leukocytes into tissues during the inflammatory response is preceded by a highly coordinated sequence of adhesive events between flowing leukocytes and endothelial cells, a process known as the adhesion cascade. Members of three major C 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu 56Ada Herrera-García et al. Eur. J. Immunol. 2013. 43: 55-64 adhesion receptor families have been implicated in this cascade: selectins, integrins, and the immunoglobulin superfamily [1,2]. In the field of inflammation, much effort is currently focused on developing antagonists of adhesion receptors, an approach known as antiadhesive therapy. This strategy is based on the assumption that if any one of the sequential steps of the adhesion cascade is inhibited, the inflammatory response is consequently suppressed or, at least, ameliorated [3,4]. Although antiadhesive therapies targeting the major leukocyte integrins LFA-1, Mac-1, and VLA-4 have proven to be relatively successful in several human inflammatory disorders [4], the inhibition of selectins and their ligands has only proven beneficial in certain animal models of inflammation [5][6][7][8], with apparently only limited clinical effects on human inflammatory conditions [9]. Nonsteroidal antiinflammatory drugs (NSAIDs...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.