Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
An overview of mathematical modelling of the human hand is given. We consider hand models from a specific background: rather than studying hands for surgical or similar goals, we target at providing a set of tools with which human grasping and manipulation capabilities can be studied, and hand functionality can be described. We do this by investigating the human hand at various levels: (1) at the level of kinematics, focussing on the movement of the bones of the hand, not taking corresponding forces into account; (2) at the musculotendon structure, i.e. by looking at the part of the hand generating the forces and thus inducing the motion; and (3) at the combination of the two, resulting in hand dynam- ics as well as the underlying neurocontrol. Our purpose is to not only provide the reader with an overview of current human hand modelling approaches but also to fill the gaps with recent results and data, thus allowing for an encompassing picture.
Because the hand is a complex poly-articular limb, numerous methods have been proposed to investigate its kinematics therefore complicating the comparison between studies and the methodological choices. With the objective of overcoming such issues, the present study compared the effect of three local frame definitions on local axis orientations and joint angles of the fingers and the wrist. Three local frames were implemented for each segment. The "Reference" frames were aligned with global axes during a static neutral posture. The "Landmark" frames were computed using palpated bony landmarks. The "Functional" frames included a flexion-extension axis estimated during functional movements. These definitions were compared with regard to the deviations between obtained local segment axes and the evolution of joint (Cardan) angles during two test motions. Each definition resulted in specific local frame orientations with deviations of 15° in average for a given local axis. Interestingly, these deviations produced only slight differences (below 7°) regarding flexion-extension Cardan angles indicating that there is no preferred method when only interested in finger flexion-extension movements. In this case, the Reference method was the easiest to implement, but did not provide physiological results for the thumb. Using the Functional frames reduced the kinematic cross-talk on the secondary and tertiary Cardan angles by up to 20° indicating that the Functional definition is useful when investigating complex three-dimensional movements. Globally, the Landmark definition provides valuable results and, contrary to the other definitions, is applicable for finger deformities or compromised joint rotations.
A musculoskeletal model of the hand and wrist can provide valuable biomechanical and neurophysiological insights, relevant for clinicians and ergonomists. Currently, no consistent data-set exists comprising the full anatomy of these upper extremity parts. The aim of this study was to collect a complete anatomical data-set of the hand and wrist, including the intrinsic and extrinsic muscles. One right lower arm, taken from a fresh frozen female specimen, was studied. Geometrical data for muscles and joints were digitized using a 3D optical tracking system. For each muscle, optimal fiber length and physiological cross-sectional area were assessed based on muscle belly mass, fiber length, and sarcomere length. A brief description of model, in which these data were imported as input, is also provided. Anatomical data including muscle morphology and joint axes (48 muscles and 24 joints) and mechanical representations of the hand are presented. After incorporating anatomical data in the presented model, a good consistency was found between outcomes of the model and the previous experimental studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.