In experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) peptide 139-151, we have previously shown that the disease is mediated by Th1 cells, which recognize tryptophan 144 as the primary TCR contact point. Here we describe an altered peptide ligand (APL), generated by a single amino acid substitution (tryptophan to glutamine) at position 144 (Q144), which inhibits the development of EAE induced with the native PLP 139-151 peptide (W144). We show that the APL induces T cells that are cross-reactive with the native peptide and that these cells produce Th2 (IL-4 and IL-10) and Th0 (IFN gamma and IL-10) cytokines. Adoptive transfer of T cell lines generated with the APL confer protection from EAE. These data show that changing a single amino acid in an antigenic peptide can significantly influence T cell differentiation and suggest that immune deviation may be one of the mechanisms by which APLs can inhibit an autoimmune disease.
To identify multiple sclerosis (MS) susceptibility loci, we conducted a genome-wide association study (GWAS) in 1,618 cases and used shared data for 3,413 controls. We performed replication in an independent set of 2,256 cases and 2,310 controls, for a total of 3,874 cases and 5,723 controls. We identified risk-associated SNPs on chromosome 12q13-14 (rs703842, P = 5.4 x 10(-11); rs10876994, P = 2.7 x 10(-10); rs12368653, P = 1.0 x 10(-7)) and upstream of CD40 on chromosome 20q13 (rs6074022, P = 1.3 x 10(-7); rs1569723, P = 2.9 x 10(-7)). Both loci are also associated with other autoimmune diseases. We also replicated several known MS associations (HLA-DR15, P = 7.0 x 10(-184); CD58, P = 9.6 x 10(-8); EVI5-RPL5, P = 2.5 x 10(-6); IL2RA, P = 7.4 x 10(-6); CLEC16A, P = 1.1 x 10(-4); IL7R, P = 1.3 x 10(-3); TYK2, P = 3.5 x 10(-3)) and observed a statistical interaction between SNPs in EVI5-RPL5 and HLA-DR15 (P = 0.001).
1 In an attempt to develop chelators as potent anti-tumour agents, we synthesized two series of novel ligands based on the very active 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) group. Since lipophilicity and membrane permeability play a critical role in Fe chelation e cacy, the aldehyde moiety of the PCIH series, namely 2-pyridylcarboxaldehyde, was replaced with the more lipophilic 2-quinolinecarboxaldehyde or di-2-pyridylketone moieties. These compounds were then systematically condensed with the same group of acid hydrazides to yield ligands based on 2-quinolinecarboxaldehyde isonicotinoyl hydrazone (QCIH) and di-2-pyridylketone isonicotinoyl hydrazone (PKIH). To examine chelator e cacy, we assessed their e ects on proliferation, Fe uptake, Fe e ux, the expression of cell cycle control molecules, iron-regulatory protein-RNAbinding activity, and 3 H-thymidine, 3 H-uridine and 3 H-leucine incorporation. 2 Despite the high lipophilicity of the QCIH ligands and the fact that they have the same Febinding site as the PCIH series, surprisingly none of these compounds were e ective. In contrast, the PKIH analogues showed marked anti-proliferative activity and Fe chelation e cacy. Indeed, the ability of these ligands to inhibit proliferation and DNA synthesis was similar or exceeded that found for the highly cytotoxic chelator, 311. In contrast to the PCIH and QCIH analogues, most of the PKIH group markedly increased the mRNA levels of molecules vital for cell cycle arrest. 3 In conclusion, our studies identify structural features useful in the design of chelators with high anti-proliferative activity. We have identi®ed a novel class of ligands that are potent Fe chelators and inhibitors of DNA synthesis, and which deserve further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.