Mutant p53s (mutp53) increase cancer invasiveness by upregulating Rab-coupling protein (RCP) and diacylglycerol kinase-α (DGKα)-dependent endosomal recycling. Here we report that mutp53-expressing tumour cells produce exosomes that mediate intercellular transfer of mutp53’s invasive/migratory gain-of-function by increasing RCP-dependent integrin recycling in other tumour cells. This process depends on mutp53’s ability to control production of the sialomucin, podocalyxin, and activity of the Rab35 GTPase which interacts with podocalyxin to influence its sorting to exosomes. Exosomes from mutp53-expressing tumour cells also influence integrin trafficking in normal fibroblasts to promote deposition of a highly pro-invasive extracellular matrix (ECM), and quantitative second harmonic generation microscopy indicates that this ECM displays a characteristic orthogonal morphology. The lung ECM of mice possessing mutp53-driven pancreatic adenocarcinomas also displays increased orthogonal characteristics which precedes metastasis, indicating that mutp53 can influence the microenvironment in distant organs in a way that can support invasive growth.
In this review, we discuss intravital microscopy of immune cells, starting from its historic origins to current applications in diverse organs. It is clear from a quantitative review of the literature that intravital microscopy is a key tool in both historic and contemporary immunological research, providing unique advances in our understanding of immune responses. We have chosen to focus this review on how intravital microscopy methodologies are used to image specific organs or systems and we present recent descriptions of fundamental immunological processes that could not have been achieved by other methods. The following target organs/systems are discussed in more detail: cremaster muscle, skin (ear and dorsal skin fold chamber), lymph node, liver, lung, mesenteric vessels, carotid artery, bone marrow, brain, spleen, foetus and lastly vessels of the knee joint.
Neutrophils have been implicated in poor outcomes in cancer and severe inflammation. We found that neutrophils expressing intermediate levels of Ly6G (Ly6GInt) were present in mouse cancer models and more abundant in those with high rates of spontaneous metastasis. Maturation, age, tissue localization and functional capacity all drive neutrophil heterogeneity. Recent studies have proposed various markers to distinguish between these heterogeneous sub-populations; however, these markers are limited to specific models of inflammation and cancer. Here, we identify and define Ly6G expression level as a robust and reliable marker to distinguish neutrophils at different stages of maturation. Ly6GInt neutrophils were bona fide immature neutrophils with reduced immune regulatory and adhesion capacity. Whereas the bone marrow is a more recognised site of granulopoiesis, the spleen also produces neutrophils in homeostasis and cancer. Strikingly, neutrophils matured faster in the spleen than in the bone marrow with unique transcriptional profiles. We propose that developmental origin is critical in neutrophil identity and postulate that neutrophils that develop in the spleen supplement the bone marrow by providing an intermediate more mature reserve before emergency haematopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.