Bark stripping by mammals is a major problem for conifer forestry worldwide. In Australia, bark stripping in the exotic plantations of Pinus radiata is mainly caused by native marsupials. As a sustainable management option, we explored the extent to which natural variation in the susceptibility of P. radiata is under genetic control and is thus amenable to genetic improvement. Bark stripping was assessed at ages four and five years in two sister trials comprising 101 and 138 open-pollinated half-sib families. A third younger trial comprising 74 full-sib control-pollinated families was assessed at two and three years after planting. Significant additive genetic variation in bark stripping was demonstrated in all trials, with narrow-sense heritability estimates between 0.06 and 0.14. Within sites, the amount of additive genetic variation detected increased with the level of bark stripping. When strongly expressed across the two sister trials, the genetic signal was stable (i.e., there was little genotype × environment interaction). No significant non-additive effect (specific combining ability effect) on bark stripping was detected in the full-sib family trial, where it was estimated that up to 22.1% reduction in bark stripping might be achieved by selecting 20% of the less susceptible families. Physical traits that were genetically correlated, and likely influenced the amount of bark removed from the trees by the marsupials, appeared to depend upon tree age. In the older trials, these traits included bark features (presence of rough bark, rough bark height, and bark thickness), whereas in the younger trial where rough bark was not developed, it was the presence of obstructive branches or needles on the stem. In the younger trial, a positive genetic correlation between prior height and bark stripping was detected, suggesting that initially faster growing trees exhibit more bark stripping than slower growing trees but later develop rough bark faster and became less susceptible. While the presence of unexplained genetic variation after accounting for these physical factors suggests that other explanatory plant traits may be involved, such as chemical traits, overall the results indicate that selection for reduced susceptibility is possible, with potential genetic gains for deployment and breeding.
In flowering plants, self-incompatibility is an effective genetic mechanism that prevents self-fertilization. Most Prunus tree species exhibit a homomorphic gametophytic self-incompatibility (GSI) system, in which the pollen phenotype is encoded by its own haploid genome. To date, no identification of S-alleles had been done in Prunus africana, the only member of the genus in Africa. To identify S-RNase alleles and hence determine S-genotypes in African cherry (Prunus africana) from Mabira Forest Reserve, Uganda, primers flanking the first and second intron were designed and these amplified two bands in most individuals. PCR bands on agarose indicated 26 and 8 different S-alleles for second and first intron respectively. Partial or full sequences were obtained for all these fragments. Comparison with published S-RNase data indicated that the amplified products were S-RNase alleles with very high interspecies homology despite the high intraspecific variation. Against expectations for a locus under balancing selection, frequency and spatial distribution of the alleles in a study plot was not random. Implications of the results to breeding efforts in the species are discussed, and mating experiments are strongly suggested to finally prove the functionality of SI in P. africana.
ObjectiveThe objective of the study was to investigate the relative abundance and effect of post-harvest treatment on total phenolics (TP) and total alkaloids in the leaves and bark of Carissa edulis and Zanthoxylum chalybeum, which would give an indication of the suitability of leaves as alternative sources of medicine in these plant species.ResultsResults indicated higher levels of total phenolics than total alkaloids in both of the species under both freezing and air drying conditions. While more alkaloids were found in leaves compared to bark, there was no difference in abundance of phenols between the plant parts of both species. Air drying preserved more TPs than freezing and the opposite was true for alkaloids. For sustainability, leaves are recommended as an alternative source of medicine instead of the preferred root or stem bark. However, the choice of whether to dry or freeze will depend on the specific compound of interest. Assessment of spatial variability of medicinal properties is highly recommended.
Establishing the genetic diversity and population structure of a species can guide the selection of appropriate conservation and sustainable utilization strategies. Next-generation sequencing (NGS) approaches are increasingly being used to generate multi-locus data for genetic structure determination. This study presents the genetic structure of a fodder species -Trema orientalis based on two genome-wide high-throughput diversity array technology (DArT) markers; silicoDArT and single nucleotide polymorphisms (SNPs). Genotyping of 119 individuals generated 40,650 silicoDArT and 4767 SNP markers. Both marker types had a high average scoring reproducibility (>99%). Genetic relationships explored by principal coordinates analysis (PCoA) showed that the first principal coordinate axis explained most of the variation in both the SilicoDArT (34.2%) and SNP (89.6%) marker data. The average polymorphic information content did not highly differ between silicoDArT (0.22) and SNPs (0.17) suggesting minimal differences in informativeness in the two groups of markers. The, mean observed (Ho) and expected (He) heterozygosity were low and differed between the silicoDArT and SNPs respectively, estimated at Ho = 0.08 and He = 0.05 for silicoDArT and Ho = 0.23 and He = 0.19 for SNPs. The population of T. orientalis was moderately differentiated (FST = 0.20–0.53) and formed 2 distinct clusters based on maximum likelihood and principal coordinates analysis. Analysis of molecular variance revealed that clusters contributed more to the variation (46.3–60.8%) than individuals (32.9–31.2%). Overall, the results suggest a high relatedness of the individuals sampled and a threatened genetic potential of T. orientalis in the wild. Therefore, genetic management activities such as ex-situ germplasm management are required for the sustainability of the species. Ex-situ conservation efforts should involve core collection of individuals from different populations to capture efficient diversity. This study demonstrates the importance of silicoDArT and SNP makers in population structure and genetic diversity analysis of Trema orientalis, useful for future genome wide studies in the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.