The mammalian brain consists of several structurally and functionally distinct regions equipped with an equally complex cell-type system. Due to its relevance in uncovering disease mechanisms, the study of cell-type-specific molecular signatures of different brain regions has increased. The rapid evolution of newer and cheaper sequencing techniques has also boosted the interest in cell-type-specific epigenetic studies. In fact, the nucleus holds most of the cell’s epigenetic information and is quite resistant to tissue dissociation processes as compared to cells. As such, nuclei are continually preferred over cells for epigenetic studies. However, the isolation of nuclei from cells is still a biochemically complex process, with every step affecting downstream results. Therefore, it is necessary to use protocols that fit the experimental design to yield nuclei of high quality and quantity. However, the current protocols are not suitable for nuclei isolation of small volumes of micro-dissected brain regions from individual mouse brains.Additionally, the caveats associated with centrifugation steps of nuclei extraction and the effects of different buffers have not been thoroughly investigated. Therefore, in this study, we describe an iodixanol based density gradient ultracentrifugation protocol suitable for micro-dissected brain regions from individual mice using ArccreERT2 (TG/WT).R26CAG-Sun1-sfGFP-Myc (M/WT or M/M). This mouse model shows sfGFP expression (sfGFP+) in the nuclear membrane of specific stimulus activated cells, thereby providing a good basis for the study - nuclei isolation and separation of cell-type-specific nuclei. The study also introduces new tools for rapid visualization and assessment of quality and quantity of nascent extracted nuclei. These tools were then used to examine critical morphological features of nuclei derived from different centrifugation methods and the use of different buffers to uncover underlying effects. Finally, to obtain cell-type-specific nuclei (sfGFP+ nuclei) from the isolated nuclei pool of high viscosity, an optimized protocol for fluorescence activated nuclei sorting (FANS) was established to speed up sorting. Additionally, we present a 1% PFA protocol for fixation of isolated nuclei for long term microscopic visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.