Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.
An urban pollutant loading model was used to demonstrate how incorrect assumptions on the particle size distribution (PSD) in urban runoff can alter the design characteristics of stormwater control measures (SCMs) used to remove solids in stormwater. Field-measured PSD, although highly variable, is generally coarser than the widely-accepted PSD characterized by the Nationwide Urban Runoff Program (NURP). PSDs can be predicted based on environmental surrogate data. There were no appreciable differences in predicted PSD when grouped by season. Model simulations of a wet detention pond and catch basin showed a much smaller surface area is needed to achieve the same level of solids removal using the median value of field-measured PSD as compared to NURP PSD. Therefore, SCMs that used the NURP PSD in the design process could be unnecessarily oversized. The median of measured PSDs, although more site-specific than NURP PSDs, could still misrepresent the efficiency of an SCM because it may not adequately capture the variability of individual runoff events. Future pollutant loading models may account for this variability through regression with environmental surrogates, but until then, without proper site characterization, the adoption of a single PSD to represent all runoff conditions may result in SCMs that are under-or over-sized, rendering them ineffective or unnecessarily costly.
The U.S. Geological Survey and the Wisconsin Department of Natural Resources began a comprehensive, multidisciplinary evaluation-monitoring program in 1989 to assess the effectiveness of the Wisconsin Nonpoint Source Program. Hydrologic, water-quality, habitat, and fish data were collected at Otter Creek from 1990 to 2002 with the pre-BMP (best-management practice) period ending in September 1993 and the post-BMP period beginning in October 1999. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Reductions between pre-and post-BMP periods were detected in median concentrations of base-flow samples for total suspended solids and BOD5 but not for total phosphorus or dissolved ammonia nitrogen; fecal coliform concentrations in base-flow samples increased over the study period. Reductions in rainfall storm loads between the preand post-BMP periods during the non-vegetative season (November through May) were detected for all three constituents monitored (total suspended solids, total phosphorus, and dissolved ammonia nitrogen). Differences in rainfall storm loads of these three constituents for the vegetative season (June through October) were not detected. When considering rainfall data from the entire year, reductions in storm loads were detected for total suspended solids and dissolved ammonia nitrogen (reductions were estimated at 58 percent for total suspended solids and 41 percent for dissolved ammonia nitrogen). Annual reductions in rainfall storm loads for the non-vegetative season were estimated at 58 percent for total suspended solids, 48 percent for total phosphorus, and 41 percent for dissolved ammonia nitrogen. Habitat and fish data were collected each year of the study to track the effects of BMPs on stream habitat and fish communities. Final trend analysis was performed using habitat quality index scores, an index of biotic integrity, and some of the originally measured fish and habitat variables. Habitat was improved for stream segments that had either natural riparian buffer or where streambank fencing was installed, but not at the station where the riparian area was pasture and no streambank fencing was installed. The results also suggest that BMP implementation in Otter Creek substantially modified fish community structure, but the overall community quality was not improved.
Drainage basin view that includes the parking lot and gaging station Drainage basin view of the parking lot and rooftop Top view of the flow splitter View of the first pressurized stormwater filtration system unit (disk-filter tower) View of the second pressurized stormwater filtration system unit (sand filters) iii Contents
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.