Major histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 degrees C) promotes assembly, and results in a high level of cell surface expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 degrees C. They can be stabilized at 37 degrees C by exposure to specific peptides known to interact with H-2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.
We describe a cell in which association of a major histocompatibility complex class I heavy chain with beta 2-microglobulin is induced by a peptide derived from influenza nucleoprotein. Association of antigenic peptides with the binding site of class I molecules may be required for correct folding of the heavy chain, association with beta 2-microglobulin and transport of the antigen-MHC complex to the cell surface.
Vaccinia infection interferes with the presentation of influenza Haemagglutinin (HA) and Nucleoprotein (NP) to class I-restricted CTL. The inhibitory effect is selective for certain epitopes, and is more profound during the late phase of infection. For influenza A/NT/60/68 NP, the block is present during both early and late phases of infection, and is selective for the COOH-terminal epitope defined by peptide 366-379, having no detectable effect on the presentation of the NH2-terminal epitope 50-63. The presentation of HA is inhibited only during the late phase of vaccinia infection. For both proteins, presentation is partially (NP) or completely (HA) restored by expression of rapidly degraded protein fragments in the vaccinia infected target cell. For HA, deletion of the NH2-terminal signal sequence completely overcomes the block. For NP, either a large NH2-terminal deletion or the construction of a rapidly degraded ubiquitin-NP fusion protein partially restores presentation. These results illustrate the relationship between degradation of viral proteins in the cytoplasm of an infected cell and recognition of epitopes at the cell surface by class I-restricted T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.