The use of sentinel lymph node surgery after neoadjuvant chemotherapy for patients who present with cN1 breast cancer provides an opportunity to avoid axillary lymph node dissection for those patients who have eradication of their nodal disease with chemotherapy. Since the initial publication of prospective trials demonstrating the false-negative rate of sentinel lymph node (SLN) surgery in this setting, this practice has been increasing. [1][2][3][4] A recent survey of the American Society of Breast Surgeons (ASBrS) reported that 85% of respondents offered SLN surgery to some patients in this setting. 5
IMPORTANCEApproximately 25% of patients with early-stage breast cancer who receive (neo)adjuvant chemotherapy experience a recurrence within 5 years. Improvements in therapy are greatly needed.OBJECTIVE To determine if pembrolizumab plus neoadjuvant chemotherapy (NACT) in early-stage breast cancer is likely to be successful in a 300-patient, confirmatory randomized phase 3 neoadjuvant clinical trial. DESIGN, SETTING, AND PARTICIPANTSThe I-SPY2 study is an ongoing open-label, multicenter, adaptively randomized phase 2 platform trial for high-risk, stage II/III breast cancer, evaluating multiple investigational arms in parallel. Standard NACT serves as the common control arm; investigational agent(s) are added to this backbone. Patients with ERBB2 (formerly HER2)-negative breast cancer were eligible for randomization to pembrolizumab between November 2015 and November 2016.INTERVENTIONS Participants were randomized to receive taxane-and anthracycline-based NACT with or without pembrolizumab, followed by definitive surgery. MAIN OUTCOMES AND MEASURESThe primary end point was pathologic complete response (pCR). Secondary end points were residual cancer burden (RCB) and 3-year event-free and distant recurrence-free survival. Investigational arms graduated when demonstrating an 85% predictive probability of success in a hypothetical confirmatory phase 3 trial. RESULTSOf the 250 women included in the final analysis, 181 were randomized to the standard NACT control group (median [range] age, 47 [24.77] years). Sixty-nine women (median [range] age, 50 [27-71] years) were randomized to 4 cycles of pembrolizumab in combination with weekly paclitaxel followed by AC; 40 hormone receptor (HR)-positive and 29 triple-negative. Pembrolizumab graduated in all 3 biomarker signatures studied. Final estimated pCR rates, evaluated in March 2017, were 44% vs 17%, 30% vs 13%, and 60% vs 22% for pembrolizumab vs control in the ERBB2-negative, HR-positive/ERBB2-negative, and triple-negative cohorts, respectively. Pembrolizumab shifted the RCB distribution to a lower disease burden for each cohort evaluated. Adverse events included immune-related endocrinopathies, notably thyroid abnormalities (13.0%) and adrenal insufficiency (8.7%). Achieving a pCR appeared predictive of long-term outcome, where patients with pCR following pembrolizumab plus chemotherapy had high event-free survival rates (93% at 3 years with 2.8 years' median follow-up).CONCLUSIONS AND RELEVANCE When added to standard neoadjuvant chemotherapy, pembrolizumab more than doubled the estimated pCR rates for both HR-positive/ERBB2negative and triple-negative breast cancer, indicating that checkpoint blockade in women with early-stage, high-risk, ERBB2-negative breast cancer is highly likely to succeed in a phase 3 trial. Pembrolizumab was the first of 10 agents to graduate in the HR-positive/ERBB2-negative signature.
Background I-SPY 2 is a phase 2 standing multicenter platform trial designed to screen multiple experimental regimens in combination with standard neoadjuvant chemotherapy for breast cancer. The goal is to matching experimental regimens with responding patient subtypes. We report results for veliparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, combined with carboplatin (VC). Methods Eligible women had ≥2.5 cm stage II/III breast cancer, categorized into 8 biomarker subtypes based on HER2, hormone-receptor status (HR) and MammaPrint. Patients are adaptively randomized within subtype to better performing regimens compared to standard therapy (control). Regimens are evaluated within 10 signatures, prospectively defined combinations of subtypes. VC plus standard therapy was considered for HER2-negative tumors and therefore evaluated in 3 signatures. The primary endpoint of I-SPY 2 is pathologic complete response (pCR). MR volume changes during treatment inform the likelihood that a patient will achieve pCR. Regimens graduate if and when they have a high (Bayesian) predictive probability of success in a subsequent phase 3 neoadjuvant trial within the graduating signature. Results VC graduated in triple-negative breast cancer with 88% predicted probability of phase 3 success. A total of 72 patients were randomized to VC and 44 to concurrent controls. Respective pCR estimates (95% probability intervals) were 51% (35%–69%) vs 26% (11%–40%). Greater toxicity of VC was manageable. Conclusion The design of I-SPY 2 has the potential to efficiently identify responding tumor subtypes for the various therapies being evaluated. VC added to standard therapy improves pCR rates specifically in triple-negative breast cancer.
Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Background The American College of Surgeons Oncology Group Z1071 trial reported a false negative rate (FNR) of 12.6% with sentinel lymph node (SLN) surgery after neoadjuvant chemotherapy in women presenting with node-positive breast cancer. One proposed method to decrease the FNR is clip placement in the positive node at initial diagnosis with confirmation of clipped node resection at surgery. Methods Z1071 was a multi-institutional trial in which women with clinical T0-4,N1-2,M0 breast cancer underwent SLN surgery and axillary dissection (ALND) after neoadjuvant chemotherapy. In cases with a clip placed in the node, the clip location at surgery (SLN or ALND) was evaluated. Results A clip was placed at initial node biopsy in 203 patients. In the 170 (83.7%) patients with cN1 disease and at least 2 SLNs resected, clip location was confirmed in 141 cases. In 107 (75.9%) patients where the clipped node was within the SLN specimen, the FNR was 6.8% (CI:1.9–16.5%). In 34 (24.1%) cases where the clipped node was in the ALND specimen, the FNR was 19.0% (CI:5.4–41.9%). In cases without a clip placed (n=355) and those where clipped node location was not confirmed at surgery (n=29), the FNR was 13.4% and 14.3%, respectively. Conclusion Clip placement at diagnosis of node-positive disease with removal of the clipped node during SLN surgery reduces the FNR of SLN surgery after neoadjuvant chemotherapy. Clip placement in the biopsy-proven node at diagnosis and evaluation of resected specimens for the clipped node should be considered when performing SLN surgery in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.