Introduction: Multiple risk factors of mortality have been identified in patients with COVID-19. Here, we sought to determine the effect of a history of neurological disorder and development of neurological manifestations on mortality in hospitalized patients with COVID-19.Methods: From March 20 to May 20, 2020, hospitalized patients with laboratory confirmed or highly suspected COVID-19 were identified at four hospitals in Ohio. Previous history of neurological disease was classified by severity (major or minor). Neurological manifestations during disease course were also grouped into major and minor manifestations. Encephalopathy, ischemic or hemorrhagic stroke, and seizures were defined as major manifestations, whereas minor neurological manifestations included headache, anosmia, dysgeusia, dizziness or vertigo, and myalgias. Multivariate logistic regression models were used to determine significant predictors of mortality in patients with COVID-19 infection.Results: 574/626 hospitalized patients were eligible for inclusion. Mean age of the 574 patients included in the analysis was 62.8 (SD 17.6), with 298 (51.9%) women. Of the cohort, 240(41.8%) patients had a prior history of neurological disease (HND), of which 204 (35.5%) had a major history of neurological disease (HND). Mortality rates were higher in patients with a major HND (30.9 vs. 15.4%; p = 0.00002), although this was not a significant predictor of death. Major neurological manifestations were recorded in 203/574 (35.4%) patients during disease course. The mortality rate in patients who had major neurological manifestations was 37.4% compared to 11.9% (p = 2 × 10 −12 ) in those who did not. In multivariate analysis, major neurological manifestation (OR 2.1,; p = 0.002) was a predictor of death. Conclusions: In this retrospective study, history of pre-existing neurological disease in hospitalized COVID-19 patients did not impact mortality; however, development of major neurological manifestations during disease course was found to be an independent predictor of death. Larger studies are needed to validate our findings.
Vibrio cholerae is a natural inhabitant of aquatic ecosystems worldwide, typically residing in coastal or brackish water. While more than 200 serogroups have been identified, only serogroups O1 and O139 have been associated with epidemic cholera. However, infections other than cholera can be caused by nonepidemic, non-O1/non-O139 V. cholerae strains, including gastroenteritis and extraintestinal infections. While V. cholerae can also survive in freshwater, that is typically only observed in regions of the world where cholera is endemic. We recently isolated V. cholerae from several locations in lakes and rivers in northwest Ohio. These isolates were all found to be non-O1/non-O139 V. cholerae strains, that would not cause cholera. However, these isolates contained a variety of virulence genes, including ctxA, rtxA, rtxC, hlyA, and ompU. Therefore, it is possible that some of these isolates have the potential to cause gastroenteritis or other infections in humans. We also investigated the relative motility of the isolates and their ability to form biofilms as this is important for V. cholerae survival in the environment. We identified one isolate that forms very robust biofilms, up to 4x that of our laboratory strains. Finally, we investigated the susceptibility of these isolates to a panel of antibiotics. We found that many of the isolates showed decreased susceptibility to some of the antibiotics tested, which could be of concern. While we do not know if these isolates are pathogenic to humans, increased surveillance to better understand the public health risk to the local community should be considered.
Vibrio cholerae is a natural inhabitant of aquatic ecosystems worldwide, typically residing in coastal or brackish water. While more than 200 serogroups have been identified, only serogroups O1 and O139 have been associated with epidemic cholera. However, infections other than cholera can be caused by nonepidemic, non-O1/non-O139 V. cholerae strains, including gastroenteritis and extraintestinal infections. While V. cholerae can also survive in freshwater, that is typically only observed in regions of the world where cholera is endemic. We recently isolated V. cholerae from several locations in lakes and rivers in northwest Ohio. These isolates were all found to be non-O1/non-O139 V. cholerae strains, that would not cause cholera. However, these isolates contained a variety of virulence genes, including ctxA, rtxA, rtxC, hlyA, and ompU. Therefore, it is possible that some of these isolates have the potential to cause gastroenteritis or other infections in humans. We also investigated the relative motility of the isolates and their ability to form biofilms as this is important for V. cholerae survival in the environment. We identified one isolate that forms very robust biofilms, up to 4x that of our laboratory control strains. Finally, we investigated the susceptibility of these isolates to a panel of antibiotics. We found that many of the isolates showed decreased susceptibility to some of the antibiotics tested, which could be of concern. While we do not know if these isolates are pathogenic to humans, increased surveillance to better understand the public health risk to the local community should be considered.ImportanceThis study found that Vibrio cholerae belonging to non-O1/non-O139 serogroups is present in freshwater lakes and rivers in northwest Ohio. Although non-O1/non-O139 V. cholerae strains generally do not produce cholera toxin, and thus do not cause epidemic cholera, they often contain other virulence factors that may contribute to pathogenicity. In fact, we found that these local isolates contained an assortment of potential virulence genes. We also found that some of the isolates showed antibiotic resistance. While we do not currently know if the local V. cholerae strains are capable of causing disease in humans, increased monitoring for V. cholerae in the region is warranted in the interest of public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.