Myosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains. The maximum actin-activated ATPase rate is relatively slow (k cat ؍ 0.77 ؎ 0.08 s ؊1 ), and high actin concentrations are required to fully activate the ATPase rate (K ATPase ؍ 34 ؎ 11 M). However, actin co-sedimentation assays suggest that myosin III has a relatively high steady-state affinity for actin in the presence of ATP (K actin ϳ 7 M). The rate of ATP binding to the motor domain is quite slow both in the presence and absence of actin (K 1 k ؉2 ؍ 0.020 and 0.001 M ؊1 ⅐s ؊1 , respectively). The rate of actin-activated phosphate release is more than 100-fold faster (85 s ؊1 ) than the k cat , whereas ADP release in the presence of actin follows a two-step mechanism (7.0 and 0.6 s ؊1 ). Thus, our data suggest a transition between two actomyosin-ADP states is the rate-limiting step in the actomyosin III ATPase cycle. Our data also suggest the myosin III motor spends a large fraction of its cycle in an actomyosin ADP state that has an intermediate affinity for actin (K d ϳ 5 M). The long lived actomyosin-ADP state may be important for the ability of myosin III to function as a cellular transporter and actin crosslinker in the actin bundles of sensory cells.
Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 M, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.
Myosin IIIA is unique among myosin proteins in that it contains an N-terminal kinase domain capable of autophosphorylating sites on the motor domain. A construct of myosin IIIA lacking the kinase domain localizes more efficiently to the stereocilia tips and alters the morphology of the tips in inner ear hair cells. Therefore, we performed a kinetic analysis of myosin IIIA without the kinase domain (MIII DeltaK) and compared these results with our reported analysis of myosin IIIA containing the kinase domain (MIII). The steady-state kinetic properties of MIII DeltaK indicate that it has a 2-fold higher maximum actin-activated ATPase rate (kcat = 1.5 +/- 0.1 s-1) and a 5-fold tighter actin affinity (KATPase = 6.0 +/- 1.4 microM, and KActin = 1.4 +/- 0.4 microM) compared to MIII. The rate of ATP binding to the motor domain is enhanced in MIII DeltaK (K1k+2 approximately 0.10 +/- 0.01 microM-1.s-1) to a level similar to the rate of binding to MIII in the presence of actin. The rate of ATP hydrolysis in the absence of actin is slow and may be rate limiting. Actin-activated phosphate release is identical with and without the kinase domain. The transition between actomyosin.ADP states, which is rate limiting in MIII, is enhanced in MIII DeltaK. MIII DeltaK accumulates more efficiently at the tips of filopodia in HeLa cells. Our results suggest a model in which the activity and concentration of myosin IIIA localized to the tips of actin bundles mediates the morphology of the tips in sensory cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.