The experiment reported examined the effect of sheep trampling and grazing during wet conditions on soil physical properties and pasture growth over three winter seasons. The soil type studied was a structurally unstable sandy clay loam (a calcic red-brown earth) located in a dryland agricultural area (307 mm average annual rainfall) of Western Australia. Deferred grazing was investigated as a management option to reduce structural deterioration at the soil surface. Changes in soil physical properties as a result of trampling were related to soil water storage and pasture productivity. Infiltration rates were reduced as a result of sheep trampling, but there were no measurable changes in soil bulk density. Differences in pasture production between continuously grazed and ungrazed treatments were related to the amount of stored soil water, which in turn was related to infiltration rates. Pasture root growth during the season was also reduced as a result of trampling. Deferred grazing yielded the same quantity of biomass for feed over the reduced period available for grazing and proved to be a beneficial management practice since reasonably high infiltration rates were maintained. Results from the study also indicated that pasture must be adequately grazed to reduce leaf area later in the season when evaporative demand increases. A high leaf area over this time period may result in early pasture senescence.
Crops of lupin (Lupinus angustifolius L. cv. Gungurru) and wheat (Triticum aestivum cv. Kulin or Spear) sown close to the break of the season and 3-6 weeks later were grown on a duplex soil at East Beverley, WA, over 3 seasons. The overall aim of the work was to examine the influence of time of sowing on growth and water use of the crops, and this paper reports their growth and yield. Early sowing resulted in greater shoot weight of all crops (up to 2.8 t/ha for lupin and 1.7 t/ha for wheat at maturity) and grain yield of lupin, but grain yield of wheat was increased in only 1 of the 3 seasons. The principal effect of the delayed sowing was to reduce the duration of linear growth; the rate of the initial exponential phase was slightly reduced by later sowing as was the rate of growth during the linear phase in lupin (by about 1.5 g/m2day) but not in wheat. Late sowing generally reduced both the number of pod/ears per unit area and the number of grains per pod/ear. Doubling the density of sowing in one of the seasons had no effects on the shoot weight and grain yield of lupin with early or late sowing but decreased those of wheat. Downward root growth of early-sown crops averaged 5.2 mm/day for lupin and 8.7 mm/day for wheat in the 3 seasons and ceased at about 0.8 m; time of sowing had no effect on these measures. Root weight at flowering was greater in lupin than in wheat crops, and root weight of lupin was about 0.5 of total plant weight during vegetative growth compared with 0.25-0.3 in wheat. Typically, only 5-6% of the root length of both crop species was present in the clay layer at flowering irrespective of sowing time. The proportion of radiation intercepted reached a higher maximum value for early-sown crops (about 0.75 in 1991 and 0.90 in 1992) than late-sown crops (about 0.60 in 1991 and 0.8 in 1992). The conversion coefficients of radiation to dry matter were very similar (about 1.8 g/MJ) for both species, but the greater partitioning of dry matter to roots in lupin than wheat meant that conversion coefficients for shoot dry matter were greater in wheat (1.43-1.68 g/MJ) than in lupin (0.93-1.16 g/MJ). The results demonstrate that early sowing produced larger crops of both lupin and wheat; this resulted in larger lupin yields, but yield of wheat was affected by disease and drought during grain filling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.