Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can cause severe oxidative stress within cells through the formation of oxidized cellular macromolecules, including lipids, proteins, and DNA. Formation of oxidatively damaged bases such as 8-oxodeoxyguanosine has been associated with aging and carcinogenesis. Furthermore, ROS can activate a number of signaling pathways, including protein kinase C and RAS. This review explores the varied cytotoxic effects of quinones using specific examples, including quinones produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines. The evidence strongly suggests that the numerous mechanisms of quinone toxicity (i.e., alkylation vs oxidative stress) can be correlated with the known pathology of the parent compound(s).
Eight botanical preparations that are commonly used for the treatment of menopausal symptoms were tested for estrogenic activity. Methanol extracts of red clover (Trifolium pratense L.), chasteberry (Vitex agnus-castus L.), and hops (Humulus lupulus L.) showed significant competitive binding to estrogen receptors alpha (ER alpha) and beta (ER beta). With cultured Ishikawa (endometrial) cells, red clover and hops exhibited estrogenic activity as indicated by induction of alkaline phosphatase (AP) activity and up-regulation of progesterone receptor (PR) mRNA. Chasteberry also stimulated PR expression, but no induction of AP activity was observed. In S30 breast cancer cells, pS2 (presenelin-2), another estrogen-inducible gene, was up-regulated in the presence of red clover, hops, and chasteberry. Interestingly, extracts of Asian ginseng (Panax ginseng C.A. Meyer) and North American ginseng (Panax quinquefolius L.) induced pS2 mRNA expression in S30 cells, but no significant ER binding affinity, AP induction, or PR expression was noted in Ishikawa cells. Dong quai [Angelica sinensis (Oliv.) Diels] and licorice (Glycyrrhiza glabra L.) showed only weak ER binding and PR and pS2 mRNA induction. Black cohosh [Cimicifuga racemosa (L.) Nutt.] showed no activity in any of the above in vitro assays. Bioassay-guided isolation utilizing ER competitive binding as a monitor and screening using ultrafiltration LC-MS revealed that genistein was the most active component of red clover. Consistent with this observation, genistein was found to be the most effective of four red clover isoflavones tested in the above in vitro assays. Therefore, estrogenic components of plant extracts can be identified using assays for estrogenic activity along with screening and identification of the active components using ultrafiltration LC-MS. These data suggest a potential use for some dietary supplements, ingested by human beings, in the treatment of menopausal symptoms.
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.