The large mucin CD43 is actively excluded from T cell/APC interaction sites, concentrating in a membrane domain distal to the site of TCR engagement. The cytoplasmic region of CD43 was necessary and sufficient for this antipodal movement. ERM cytoskeletal adaptor proteins colocalized with CD43 in this domain. An ERM dominant-negative mutant blocked the distal accumulation of CD43 and another known ERM binding protein, Rho-GDI. Inhibition of ERM function decreased the production of IL-2 and IFNgamma, without affecting PKC(theta) focusing or CD69 upregulation. These results indicate that ERM proteins organize a complex distal to the T cell/APC interaction site and provide evidence that full T cell activation may involve removal of inhibitory proteins from the immunological synapse.
Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site.
We have shown previously that Wiskott-Aldrich syndrome protein (WASP) activation at the site of T cell-APC interaction is a two-step process, with recruitment dependent on the proline-rich domain and activation dependent on binding of Cdc42-GTP to the GTPase binding domain. Here, we show that WASP recruitment occurs through binding to the C-terminal Src homology 3 domain of Nck. In contrast, WASP activation requires Vav-1. In Vav-1-deficient T cells, WASP recruitment proceeds normally, but localized activation of Cdc42 and WASP is disrupted. The recruitment and activation of WASP are coordinated by tyrosine-phosphorylated Src homology 2 domain-containing leukocyte protein of 76 kDa, which functions as a scaffold, bringing Nck and WASP into proximity with Vav-1 and Cdc42-GTP. Taken together, these findings reconstruct the signaling pathway leading from TCR ligation to localized WASP activation.
Wiskott-Aldrich syndrome protein (WASP)-deficient T cells exhibit defects in IL-2 production that are widely believed to stem from primary defects in actin remodeling and immune synapse formation. Surprisingly, however, we find that WASP-deficient T cells responding to Ag-specific APCs polymerize actin and organize talin and PKCθ normally, forming an immune synapse that is stable for at least 3 h. At low doses of peptide, WASP-deficient T cells show less efficient talin and PKCθ polarization. Thus, although WASP may facilitate immune synapse formation at low peptide concentrations, WASP is not required for this process. Defects in IL-2 production are observed even under conditions in which immune synapse formation proceeds normally, suggesting that the role of WASP in regulating IL-2 production is independent of its role in immune synapse formation.
Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.