We apply results from algebraic coding theory to solve problems in cryptography, by using recent results on list decoding of error-correcting codes to efficiently find traitors who collude to create pirates. We produce schemes for which the TA (traceability) traitor tracing algorithm is very fast. We compare the TA and IPP (identifiable parent property) traitor tracing algorithms, and give evidence that when using an algebraic structure, the ability to trace traitors with the IPP algorithm implies the ability to trace with the TA algorithm. We also demonstrate that list decoding techniques can be used to find all possible pirate coalitions. Finally, we raise some related open questions about linear codes, and suggest uses for other decoding techniques in the presence of additional information about traitor behavior.
Index Terms-Algebraic geometry code, identifiable parent property, list decoding, traceability code, traitor tracing, Reed-Solomon code.A. Silverberg is with the
Abstract. We use powerful new techniques for list decoding errorcorrecting codes to efficiently trace traitors. Although much work has focused on constructing traceability schemes, the complexity of the tracing algorithm has received little attention. Because the TA tracing algorithm has a runtime of O(N ) in general, where N is the number of users, it is inefficient for large populations. We produce schemes for which the TA algorithm is very fast. The IPP tracing algorithm, though less efficient, can list all coalitions capable of constructing a given pirate. We give evidence that when using an algebraic structure, the ability to trace with the IPP algorithm implies the ability to trace with the TA algorithm. We also construct schemes with an algorithm that finds all possible traitor coalitions faster than the IPP algorithm. Finally, we suggest uses for other decoding techniques in the presence of additional information about traitor behavior.
Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes does not support accurate error correction, although the error-correcting performance of RF codes "catches up" to that of random comparison codes when a small tolerance to error is introduced. On the other hand, RF codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.