Several dominant, late-onset neurodegenerative diseases (e.g. Huntington's disease) are caused by expansion of polyglutamine (polyQ) repeats within specific proteins. The diverse, yet overlapping, pathology of these diseases could be due to novel deleterious functions unique to each protein or to a common pathophysiology mediated by the long polyQ chains themselves. By engineering Drosophila to express different polyQ peptides, we find that expanded polyQ chains alone are intrinsically cytotoxic and cause neuronal degeneration and early adult death. We further find that this intrinsic toxicity is dependent on cell type and polyQ length and that the inclusion of other amino acids modifies and reduces toxicity. This is the first in vivo evidence that polyQs, when removed from their disease gene context, cause neurotoxicity. These studies provide a basis for understanding the diverse clinical presentations in terms of the intrinsic cytotoxic effect of polyQ peptides being modulated by protein context. Parallel experiments in which cytotoxic polyQ expansions were engineered into Dishevelled, a Drosophila protein containing a naturally occurring polyQ tract, strongly suggest that the effect of a toxic polyQ peptide can be neutralized by protein context. This animal model provides a simple and effective means of screening for therapeutics that relieves the polyQ-induced lethality, independent of any particular disease gene. By quantifying the degree of lethality in several transgenic lines, we have identified a number of genetically modified strains that are suitable for eventual testing of compounds or genes that ameliorate the pathology of polyQ peptides.
Huntingtin (Htt) is a widely expressed protein that causes tissue-specific degeneration when mutated to contain an expanded polyglutamine (poly(Q)) domain. Although Htt is large, 350 kDa, the appearance of amino-terminal fragments of Htt in extracts of postmortem brain tissue from patients with Huntington disease (HD), and the fact that an amino-terminal fragment, Htt exon 1 protein (Httex1p), is sufficient to cause disease in models of HD, points to the importance of the aminoterminal region of Htt in the disease process. The first exon of Htt encodes 17 amino acids followed by a poly(Q) repeat of variable length and culminating with a proline-rich domain of 50 amino acids. Because modifications to this fragment have the potential to directly affect pathogenesis in several ways, we have surveyed this fragment for potential post-translational modifications that might affect Htt behavior and detected several modifications of Httex1p. Here we report that the most prevalent modifications of Httex1p are NH 2 -terminal acetylation and phosphorylation of threonine 3 (pThr-3). We demonstrate that pThr-3 occurs on full-length Htt in vivo, and that this modification affects the aggregation and pathogenic properties of Htt. Thus, therapeutic strategies that modulate these events could in turn affect Htt pathogenesis.Aberrant behavior of mutant Huntingtin protein (Htt), 2 caused by an expansion of the CAG triplet repeat sequence within the first exon of the huntingtin (IT15) gene, results in neurodegeneration and leads to Huntington disease (HD) (1).Full-length Htt protein is 350 kDa in size, but a truncated form of Htt (Httex1p), which includes the expanded polyglutamine region, is sufficient to cause pathology in animal models (2-4). Moreover, an amino-terminal fragment of Htt is detected in nuclear extracts from patient brain and is not detected in control cortex samples (5). In fact, recent studies suggest that production of truncated fragments is essential for disease (6, 7).The first 17 amino acids of Htt, MATLEKLMKAFESLKSF, are highly conserved throughout mammalian evolution (8, 9), suggesting an important function for these residues. It is well established that post-translational modifications of a protein can affect activity state, intracellular localization, turnover rate, and protein-protein interactions. Several modifications of Htt, without the addition of exogenous modifiers, have been identified (10 -18) and implicated in HD (18, 19), but to date, none of these occur within the pathogenic Httex1p fragment. Given that this domain is sufficient to cause HD-like phenotypes, modifications that occur within this pathologic fragment may directly affect either its biophysical properties or its interaction with cellular components that affect pathology. Within the first 17 amino acids of Httex1p, there are several candidate amino acids for post-translational modification. Whereas genetic mutation of the lysines in this region alters HD pathology (20, 21), direct evidence for modifications of the amino-terminal fragm...
Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD.
The dishevelled gene of Drosophila is required to establish coherent arrays of polarized cells and is also required to establish segments in the embryo. Here, we show that loss of dishevelled function in clones, in double heterozygotes with wingless mutants and in flies bearing a weak dishevelled transgene leads to patterning defects which phenocopy defects observed in wingless mutants alone. Further, polarized cells in all body segments require dishevelled function to establish planar cell polarity, and some wingless alleles and dishevelled; wingless double heterozygotes exhibit bristle polarity defects identical to those seen in dishevelled alone. The requirement for dishevelled in establishing polarity in cell autonomous. The dishevelled gene encodes a novel intracellular protein that shares an amino acid motif with several other proteins that are found associated with cell junctions. Clonal analysis of dishevelled in leg discs provides a unique opportunity to test the hypothesis that the wingless dishevelled interaction species at least one of the circumferential positional values predicted by the polar coordinate model. We propose that dishevelled encodes an intracellular protein required to respond to a wingless signal and that this interaction is essential for establishing both cell polarity and cell identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.