The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCRIABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.The BCRIABL oncogene is a product of the Philadelphia chromosome (Ph'). The reciprocal translocation between chromosomes 9 and 22 which generates this cytogenetic abnormality defines Ph' leukemias (for a review, see reference 4). BCR sequences constitute a gene of unknown function (14), portions of which are fused upstream of the second exon of c-ABL by mRNA splicing (47). The Ph' breakpoints in chromosome 22 are clustered within two regions, giving rise to two distinct forms of BCRIABL. The breakpoints for the gene encoding P210 fall within the introns of a 5.8-kb region spanning a cluster of five small BCR exons (14). The breakpoints for the gene encoding P185 predominantly fall within a 20-kb region at the 3' end of the 70-kb first intron of BCR (3, 8). The two chimeric BCR/ABL proteins induce transformation of lymphoid cells in vitro (33, 34) and produce lymphoid and myeloid leukemias in mice (7,10,18,23).We have previously demonstrated that the P185 form of BCRIABL has approximately a fivefold-higher level of tyrosine kinase activity than the P210 form when the proteins are assayed for both in vitro autophosphorylation following synthesis in rabbit reticulocyte lysate and total in vivo tyrosine phosphorylation following acute infection of Rat 1 cells (29). This correlates with the greater transforming potency of P185 relative to P210 in both primary bone marrow cultures (34) and Rat 1 fibroblasts (29) chronic form of leukemia (for a review, see reference 4). These data indicate that the specific contents of BCR sequences can influence both the enzymatic activity and the transforming potency of BCRIABL.The c-abl proto-oncogene shares homology with src in its tyrosine kinase domain (17) and in the upstream kinase regu...
Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coliderived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF β-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not β-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.scatter factor | HGFR | MetMAb | OA5D5
Bispecific antibodies and antibody fragments in various formats have been explored as a means to recruit cytolytic T cells to kill tumor cells. Encouraging clinical data have been reported with molecules such as the anti-CD19/CD3 bispecific T cell engager (BiTE) blinatumomab. However, the clinical use of many reported T cell-recruiting bispecific modalities is limited by liabilities including unfavorable pharmacokinetics, potential immunogenicity, and manufacturing challenges. We describe a B cell-targeting anti-CD20/CD3 T cell-dependent bispecific antibody (CD20-TDB), which is a full-length, humanized immunoglobulin G1 molecule with near-native antibody architecture constructed using "knobs-into-holes" technology. CD20-TDB is highly active in killing CD20-expressing B cells, including primary patient leukemia and lymphoma cells both in vitro and in vivo. In cynomolgus monkeys, CD20-TDB potently depletes B cells in peripheral blood and lymphoid tissues at a single dose of 1 mg/kg while demonstrating pharmacokinetic properties similar to those of conventional monoclonal antibodies. CD20-TDB also exhibits activity in vitro and in vivo in the presence of competing CD20-targeting antibodies. These data provide rationale for the clinical testing of CD20-TDB for the treatment of CD20-expressing B cell malignancies.
Clinical results from the latest strategies for T-cell activation in cancer have fired interest in combination immunotherapies that can fully engage T-cell immunity. In this study, we describe a trastuzumab-based bispecific antibody, HER2-TDB, which targets HER2 and conditionally activates T cells. HER2-TDB specifically killed HER2-expressing cancer cells at low picomolar concentrations. Because of its unique mechanism of action, which is independent of HER2 signaling or chemotherapeutic sensitivity, HER2-TDB eliminated cells refractory to currently approved HER2 therapies. HER2-TDB exhibited potent antitumor activity in four preclinical model systems, including MMTV-huHER2 and huCD3 transgenic mice. PD-L1 expression in tumors limited HER2-TDB activity, but this resistance could be reversed by anti-PD-L1 treatment. Thus, combining HER2-TDB with anti-PD-L1 yielded a combination immunotherapy that enhanced tumor growth inhibition, increasing the rates and durability of therapeutic response. Cancer Res; 74(19); 5561-71. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.