Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African–European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene–environment interaction—defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa—we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.
Background African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. Methods Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. Results Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. Conclusions In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.
Background: Germline testing for prostate cancer is on the increase, with clinical implications for risk assessment, treatment, and management. Regardless of family history, NCCN recommends germline testing for patients with metastatic, regional, very-high-risk localized, and high-risk localized prostate cancer. Although African ancestry is a significant risk factor for aggressive prostate cancer, due to a lack of available data no testing criteria have been established for ethnic minorities. Patients and Methods: Through deep sequencing, we interrogated the 20 most common germline testing panel genes in 113 Black South African males presenting with largely advanced prostate cancer. Bioinformatic tools were then used to identify the pathogenicity of the variants. Results: After we identified 39 predicted deleterious variants (16 genes), further computational annotation classified 17 variants as potentially oncogenic (12 genes; 17.7% of patients). Rare pathogenic variants included CHEK2 Arg95Ter, BRCA2 Trp31Arg, ATM Arg3047Ter (2 patients), and TP53 Arg282Trp. Notable oncogenic variants of unknown pathogenicity included novel BRCA2 Leu3038Ile in a patient with early-onset disease, whereas patients with FANCA Arg504Cys and RAD51C Arg260Gln reported a family history of prostate cancer. Overall, rare pathogenic and early-onset or familial-associated oncogenic variants were identified in 6.9% (5/72) and 9.2% (8/87) of patients presenting with a Gleason score ≥8 or ≥4 + 3 prostate cancer, respectively. Conclusions: In this first-of-its-kind study of southern African males, we provide support of African inclusion for advanced, early-onset, and familial prostate cancer genetic testing, indicating clinical value for 30% of current gene panels. Recognizing current panel limitations highlights an urgent need to establish testing guidelines for men of African ancestry. We provide a rationale for considering lowering the pathologic diagnostic inclusion criteria and call for further genome-wide interrogation to ensure the best possible African-relevant prostate cancer gene panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.