SLCO1B1 (rs4149056, 521T > C) is associated with statin-induced myotoxicity in Chinese patients with coronary artery disease. In addition, SLCO1B1 521C mutant allele increased the risk of rosuvastatin-associated myotoxicity.
Cisplatin is a first-line chemotherapy drug that is commonly used in the treatment of epithelial ovarian cancer (EOC). However, insensitivity to cisplatin markedly influences the outcomes of chemotherapy. MicroRNAs (miRNAs/miRs) have been demonstrated to modulate drug resistance in a number of types of cancer. The aim of the present study was to investigate the key miRNAs involved in modulating drug resistance in ovarian cancer cells. miR-200b and miR-200c were identified to be frequently deregulated in ovarian cancer. Upregulation of miR-200b and miR-200c promoted EOC cell death in the presence of cisplatin. Upregulation of miR-125b-5p significantly decreased tumor growth in combination with cisplatin in a mouse model. Significantly, miR-200b and miR-200c reversed cisplatin resistance by targeting DNA methyltransferases (DNMTs) (directly targeting DNMT3A/DNMT3B and indirectly targeting DNMT1 via specificity protein 1). These results indicate that miR-200b- and miR-200c-mediated regulation of DNMTs serves a crucial function in the cellular response to cisplatin. miR-200b- and miR-200c-mediated downregulation of DNMTs may improve chemotherapeutic efficacy by increasing the sensitivity of cancer cells and thus may have an impact on ovarian cancer therapy.
Porcine circovirus type 3 (PCV3) is a novel porcine circovirus species associated with several diseases such as porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, reproductive failure, cardiac pathologies, and multisystemic inflammation in piglets and sows. Currently, many studies have focused on the interaction between microbiota composition and disease progression. However, dynamic changes in the composition of the gut microbiota following PCV3 infection are still unknown. In this study, alterations in gut microbiota in PCV3-inoculated and sham-inoculated piglets were analyzed at various time points [7, 14, 21, and 28 days post-inoculation (dpi)] using the Illumina MiSeq platform. Using principal coordinate analysis, obvious structural segregations were observed in bacterial diversity and richness between PCV3-and sham-inoculated piglets, as well as at the four different time points. The abundance of gut microbiota exhibited a remarkable time-related decrease in Clostridium_sensu_stricto_1 in PCV3-inoculated piglets. In addition, significant differences were observed in functional classification based on cluster of orthologous groups assignment, between PCV3-and sham-inoculated piglets. Our findings demonstrated that PCV3 infection caused dynamic changes in the gut microbiota community. Therefore, regulating gut microbiota community may be an effective approach for preventing PCV3 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.