We use numerical optimization to find a one-dimensional potential energy function that yields the largest hyperpolarizability, which we find is within 30% of the fundamental limit. Our results reveal insights into the character of the potential energy functions and wave functions that lead to the largest hyperpolarizability. We suggest that donor-acceptor molecules with a conjugated bridge with many sites of reduced conjugation to impart conjugation modulation may be the best paradigm for making materials with huge hyperpolarizabilities that approach the fundamental limit.
We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point charges in two-dimensions that yield the largest hyperpolarizabilities, which we find to be within 30% of the fundamental limit. We investigate the character of the potential energy functions and resulting wavefunctions and find that a broad range of potentials yield the same intrinsic hyperpolarizability ceiling of 0.709.
OBJECTIVE
The purpose of this study was to investigate the effects of insulin on human placental transcriptome and biological processes in first-trimester pregnancy.
STUDY DESIGN
Maternal plasma and placenta villous tissue were obtained at the time of voluntary termination of pregnancy (7–12 weeks) from 17 lean (body mass index, 20.9 ± 1.5 kg/m2) and 18 obese (body mass index, 33.5 ± 2.6 kg/m2) women. Trophoblast cells were immediately isolated for in vitro treatment with insulin or vehicle. Patterns of global gene expression were analyzed using genome microarray profiling after hybridization to Human Gene 1.1 ST and real time reverse transcription–polymerase chain reaction.
RESULTS
The global trophoblast transcriptome was qualitatively separated in insulin-treated vs untreated trophoblasts of lean women. The number of insulin-sensitive genes detected in the trophoblasts of lean women was 2875 (P < .001). Maternal obesity reduced the number of insulin-sensitive genes recovered by 30-fold. Insulin significantly impaired several gene networks regulating cell cycle and cholesterol homeostasis but did not modify pathways related to glucose transport. Obesity associated with high insulin and insulin resistance, but not maternal hyperinsulinemia alone, impaired the global gene profiling of early gestation placenta, highlighting mitochondrial dysfunction and decreased energy metabolism.
CONCLUSION
We report for the first time that human trophoblast cells are highly sensitive to insulin regulation in early gestation. Maternal obesity associated with insulin resistance programs the placental transcriptome toward refractoriness to insulin with potential adverse consequences for placental structure and function.
We propose the scale-invariant intrinsic hyperpolarizability as a measure of the figure of merit for electro-optic molecules. By applying our analysis to the best second-order nonlinear optical molecules that are made using present paradigms, we conclude that it should be possible to make dye-doped polymers with electro-optic coefficients of several thousand pico-meters per volt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.