Depositions of titanium-containing diamond-like carbon (Ti-DLC) films were conducted by mixing C+ and Ti+ plasma streams originated from cathodic arc plasma sources in argon (Ar). The deposition was processed at Ti target current ranging from 20 Amp to 70 Amp. Film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS). Film microstructures were evaluated using field emission scanning electron microscopy (FEGSEM), an atomic force microscope (AFM), X-ray diffractometry (XRD) and high-resolution transmission electron microscopy (HRTEM). Mechanical properties were investigated by using a nanoindentation tester and ball on disc wear test. Results shows that surface roughness (Ra) of the films ranged between 2.4 and 7.2 nm and roughness increased relative to the increase in Ti target current. The FESEM studies showed that the surface micrographs of Ti-DLC films revealed a cauliflower-like microstructure and the cross-sectional micrograph revealed a snake-skin like structure. HRTEM studies showed that the Ti-DLC films consisted of nano scale TiC particles which were comparable with low angle XRD and XPS results. XPS analysis established that the Ti2p spectrum is present when the Ti target current reaches 30 Amp or higher. Ti concentration increased as the Ti target current was increased. An extremely thin TiO2 layer exists on the top of the Ti-DLC films which was comparable with the AES results. The film thickness which could be deposited for Ti-DLC is much higher than that of conventional DLC films. Nanoindentation tests show that the nanohardness of the films ranging 15-22 GPa, with Er values ranging from 145 to 175 GPa. The wear test demonstrates the friction coefficient of the 420SS substrate, DLC and Ti-DLC films were about 0.8, 0.3 and 0.2, respectively. Obviously, the friction coefficients of the Ti-DLC films were lower than that of the DLC films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.