ABSTRACT. Mountain ecosystems are highly sensitive to global change. In fact, the continued capacity of mountain regions to provide goods and services to society is threatened by the impact of environmental changes on ecosystems. Although mapping ecosystem services values is known to support sustainable resource management, the integration of spatially explicit local expert knowledge on ecosystem dynamics and social responses to global changes has not yet been integrated in the modeling process. This contribution demonstrates the importance of integrating local knowledge into the spatially explicit valuation of ecosystem services. Knowledge acquired by expert surveys flows into a GIS-based Bayesian Network for valuing forest ecosystem services under a land-use and a climate change scenario in a case study in the Swiss Alps. Results show that including expert knowledge in ecosystem services mapping not only reduces uncertainties considerably, but also has an important effect on the ecosystem services values. Particularly the iterative process between integrating expert knowledge into the modeling process and mapping ecosystem services guarantees a continuous improvement of ecosystem services values maps while opening a new way for mutual learning between scientists and stakeholders which might support adaptive resource management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.