ObjectivesThe long-acting muscarinic antagonist (LAMA) glycopyrronium (NVA237) has recently been approved as a once-daily treatment for COPD. The objectives of this study were to determine the dose delivery characteristics of glycopyrronium and compare them with those of the LAMA tiotropium, both delivered by their respective capsule-based dry-powder inhalers (DPIs).Research design and methodsSeven inhalation profiles derived from patients with moderate and severe COPD were reproduced to determine the aerodynamic particle size distribution of glycopyrronium delivered by the Breezhaler device, a low-resistance DPI†Breezhaler is a registered trade name of Novartis Pharma AG, Basel. Theoretical respiratory tract deposition was estimated using a semi-empirical model for healthy lungs. These results were compared with those of tiotropium delivered by the high-resistance HandiHaler‡HandiHaler is a registered trade name of Boehringer-Ingelheim, Ingelheim, Germany device obtained in a previous study using the same set of inhalation profiles. Study limitations are that fine particle fraction (FPF) and particle size are generated by the inhalers are not a direct measure of lung deposition, and the bronchodilator effect of inhaled drugs does not depend solely upon the percentage of the total dose that reaches the lung.ResultsThe mean FPF (≤4.7 µm) was 42.6% of the nominal dose (which refers to the content of the capsule) for glycopyrronium and 9.8% for tiotropium while the mass median aerodynamic diameter (MMAD) was 2.8 µm and 3.9 µm for glycopyrronium and tiotropium, respectively. The mean estimated intrathoracic drug deposition as a percentage of the mean dose delivered to the Next Generation Impactor was 39% for glycopyrronium and 22% for tiotropium.ConclusionsThe glycopyrronium capsule-based DPI delivered a higher FPF and greater and more consistent intrathoracic deposition irrespective of age and disease severity compared to the tiotropium capsule-based DPI, suggesting that it may be suitable for use by patients with a wide range of COPD severities.
We investigated the in vitro influence of breathing patterns on lung dose (LD) and particle size distribution in an infant upper airway cast model in order to determine the optimal particle size for nebulized aerosol delivery to infants. Budesol (nebulizer solution of budesonide) delivery from a perforated vibrating membrane nebulizer (eFlow Baby functional prototype) through an upper airway cast of a nine month old infant (SAINT-model) was measured at a fixed respiratory rate (RR) of 30 breaths per minute (bpm) and a tidal volume (Vt) of 50, 100, and 200 mL, respectively, and at a fixed Vt of 100 mL and a RR of 30, 60, and 78 bpm, respectively. LD expressed as a percentage of the nominal dose (ND; range, 5.8-30.3%) decreased with increasing Vt (p < 0.001) and with increasing RR (p < 0.001). Median mass aerodynamic diameter (MMAD) after passage (range, 2.4-3.4 microm) through the upper airway cast showed a negative correlation with increasing Vt (p < 0.001) and with increasing RR (p = 0.015). Particles available as LD for all simulated breathing pattern showed a particle size distribution with a MMAD of 2.4 microm and a geometric standard deviation (GSD) of 1.56. From our in vitro study, we conclude that the optimal particle size for nebulized aerosols for inhalation therapy for infants should have a MMAD of <2.4 microm.
Background
Indacaterol maleate delivered with the Breezhaler® inhalation device is a long-acting β2-agonist approved for chronic obstructive pulmonary disease. In the development of a once daily, inhaled fixed dose combination (FDC) of indacaterol, glycopyrronium bromide (a long-acting muscarinic antagonist), and mometasone furoate (an inhaled corticosteroid [ICS]) for the treatment of patients with asthma, the acetate salt of indacaterol is used instead of the maleate salt. Here, we investigated the lung function, pharmacokinetics (PK) and safety of indacaterol maleate 150 μg once daily (o.d.) and indacaterol acetate 150 μg o.d. in comparison with placebo.
Methods
This was a randomised, double-blind, three-period crossover study (ClinicalTrials.gov identifier, NCT03257995) in patients with asthma on background ICS therapy. Patients with percent predicted pre-bronchodilator forced expiratory volume per second (FEV1) ≥50% and ≤ 90% were included in the study. Patients received indacaterol maleate 150 μg o.d., indacaterol acetate 150 μg o.d., or placebo on top of stable background ICS in randomised sequence. Trough FEV1 was assessed after 14 days of treatment. PK of indacaterol salts were assessed at steady state after 14 days of treatment; peak expiratory flow (PEF) rate and rescue medication use were collected with a combined PEF-meter/electronic diary throughout the study.
Results
Of the 54 adult patients (median age of 48 years), 51 patients completed the study. Both indacaterol salts demonstrated statistically significant improvements in trough FEV1 of 186 mL (maleate) and 146 mL (acetate) compared with placebo (both P < 0.001). FEV1 AUC0-4h improved by 248 mL (maleate) and 245 mL (acetate), and PEF by 33 L/min (maleate) and 30.8 L/min (acetate) versus placebo. Systemic exposure of indacaterol (AUC0-24h,ss and Cmax,ss on Day 14) was comparable after administration of both salt forms. Both salt forms demonstrated a good safety profile and were well tolerated, with a difference in the reporting frequency of AEs of coughing (maleate, 23.5%; acetate, 0%).
Conclusions
In patients with asthma, indacaterol maleate and acetate elicited comparable and significant improvements in lung function compared with placebo and achieved comparable systemic exposure. Both indacaterol salts were safe and well tolerated.
Trial registration
ClinicalTrials.gov NCT03257995 June 06, 2017
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.