Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible, wide and deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Abstract. We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN with filters of a trained CAE stack yields superior performance on a digit (MNIST) and an object recognition (CIFAR10) benchmark.
Abstract-Recognising lines of unconstrained handwritten text is a challenging task. The difficulty of segmenting cursive or overlapping characters, combined with the need to exploit surrounding context, has led to low recognition rates for even the best current recognisers. Most recent progress in the field has been made either through improved preprocessing, or through advances in language modelling. Relatively little work has been done on the basic recognition algorithms. Indeed, most systems rely on the same hidden Markov models that have been used for decades in speech and handwriting recognition, despite their well-known shortcomings. This paper proposes an alternative approach based on a novel type of recurrent neural network, specifically designed for sequence labelling tasks where the data is hard to segment and contains long range, bidirectional interdependencies. In experiments on two large unconstrained handwriting databases, our approach achieves word recognition accuracies of 79.7% on online data and 74.1% on offline data, significantly outperforming a state-of-the-art HMM-based system. In addition, we demonstrate the network's robustness to lexicon size, measure the individual influence of its hidden layers, and analyse its use of context. Lastly we provide an in depth discussion of the differences between the network and HMMs, suggesting reasons for the network's superior performance.
Abstract. We use deep max-pooling convolutional neural networks to detect mitosis in breast histology images. The networks are trained to classify each pixel in the images, using as context a patch centered on the pixel. Simple postprocessing is then applied to the network output. Our approach won the ICPR 2012 mitosis detection competition, outperforming other contestants by a significant margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.