Surface engineering can be used to prevent ice accumulation and adhesion in environments that deal with icing problems. One recent engineering approach, slippery liquid infused porous surfaces (SLIPS), comprises a smooth and slippery lubricating surface, where lubricant is trapped within the pores of a solid material to repel various substances, such as water and ice. However, it remains unclear whether the slippery surfaces retain their icephobic characteristics under the impact of supercooled water droplets or repeated freezing and melting cycles. Here, the icephobic properties of SLIPS are evaluated under multiple droplet freeze–thaw and ice accretion–detachment cycles and compared to hydrophobic and superhydrophobic surfaces. The experiments are designed to mimic real environmental conditions, thus, the icephobicity is investigated in icing wind tunnel, where ice accretion occurs through the impact of supercooled water droplets. The adhesion of ice remained extremely low, <10 kPa, which is four times lower than ice adhesion onto smooth fluoropolymer surfaces, even after repeated ice accretion–detachment cycles. Moreover, cyclic droplet freeze–thaw experiments provide insight into the effects of temperature cycling on SLIPS wettability, showing stable wetting performance. The results suggest liquid infused porous surfaces as a potential solution to icephobicity under challenging and variating environmental conditions.
Aerosol techniques were used to synthesize spherical and monodisperse silver nanoparticles for plasmonic materials. The particles were generated with an evaporation–condensation technique followed by size selection and sintering with a differential mobility analyzer and a tube furnace, respectively. Finally, the nanoparticles were collected on a glass substrate with an electrostatic precipitator. The particle size distributions were measured with a scanning mobility particle sizer and verified with a transmission electron microscope. A spectrophotometer was used to measure the optical extinction spectra of the prepared samples, which contained particles with diameters of approximately 50, 90 and 130 nm. By controlling the particle size, the dipolar peak of the localized surface plasmon resonance was tuned between wavelengths of 398 and 448 nm. In addition, quadrupolar resonances were observed at shorter wavelengths as predicted by the simplified theoretical model used to characterize the measured spectra.
Slippery, liquid-infused porous surfaces offer a promising route for producing omniphobic and anti-icing surfaces. Typically, these surfaces are made as a coating with expensive and time consuming assembly methods or with fluorinated films and oils. We report on a route for producing liquid-infused surfaces, which utilizes a liquid precursor fed oxygen-hydrogen flame to produce titania nanoparticles deposited directly on a low-density polyethylene film. This porous nanocoating, with thickness of several hundreds of nanometers, is then filled with silicone oil. The produced surfaces are shown to exhibit excellent anti-icing properties, with an ice adhesion strength of ∼12 kPa, which is an order of magnitude improvement when compared to the plain polyethylene film. The surface was also capable of maintaining this property even after cyclic icing testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.