Aggregation of 2-acylaminopyridines and their 6-methyl derivatives in chloroform solution was studied by (1)H, (13)C, and (15)N NMR spectroscopies. The results were compared with (13)C and (15)N CPMAS NMR and IR spectral as well as with X-ray structural data. Intermolecular interactions in solution and in solid state were found to have a similar nature. Relatively strong N(amide)-H···N(pyridine) intermolecular hydrogen bonds enable dimerization to take place. Steric interactions in N-pivaloyl- and N-1-adamantylcarbonyl as well as that caused by the 6-methyl group hinder formation of the dimeric aggregates stabilized by the N(amide)-H···N(pyridine) intermolecular hydrogen bonds. In general, the DFT optimized geometries of the aggregates in chloroform solution are in agreement with the X-ray crystal structures. Wavenumbers of the stretching vibration band of the C═O group were also found indicative of the type of hydrogen bond present in the solid state.
This paper describes the preparation and use of conjugates of porphyrins and bile acids as ligands to bind to tumor expressed saccharides. Bile acid-porphyrin conjugates were tested for recognition of saccharides that are typically present on malignant tumor cells. Fluorescence microscopy, in vitro PDT cell killing, and PDT of subcutaneous 4T1 mouse tumors is reported. High selectivity for saccharide cancer markers and cancer cells was observed. This in vivo and in vitro study demonstrated high potential use for these compounds in targeted photodynamic therapy.
Association constants of 2,6-bis(alkylcarbonylamino)pyridines (alkyl = methyl or ethyl) and their perfluoroalkyl analogues with succin-and maleimide as well as with 2,2 0 -dipyridylamine (complementary DAD and ADA hydrogen bonding motifs are responsible for formation of the associates) have been determined by NMR titrations and quantum chemical calculations. Interactions of 2,6-bis (alkylcarbonylamino)pyridines with imides differ by character from these of perfluoroalkyl analogues. Such large difference was not observed for the 2,2 0 -dipyridylamine associates. Since fluorine atoms cause carbonylamino groups to be stronger hydrogen bond donors, perfluorinated species of this type were found to be more stable. Single crystal X-ray structures of 2,6-bis(trifluoromethylcarbonylamino)pyridine and 2,6-bis(pentafluoroethylcarbonylamino)pyridine have been also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.