Glacial landforms of the Lake Kuittijärvi area, Russian Karelia, which covers an area of more than 7000 km 2 , were studied in detail using aerial photography and satellite imagery methods and on-site field observations. This was done to reconstruct a detailed history of Scandinavian ice sheet behaviour in the Lake Kuittijärvi area. The results indicate that the Lake Tuoppajärvi sub-ice stream (TIS) that formed the northern part of the Kuusamo-White Sea ice stream and the Lake Kuittijärvi sub-ice stream (KIS), which was part of the Northern Karelian ice stream, operated in the area during the last deglaciation. Subglacially formed lineation patterns associated with other indicative landforms such as end moraines and esker ridges indicate a clear age relationship between the ice streams' activity and that the KIS was active after the linear landforms were created by the TIS. It is estimated that deglaciation of the TIS from the Kalevala end moraine to the Lake Pääjärvi end moraine took place between ca. 11 300 -10 900 calendar years ago. It seems that the terminus of the KIS marker by the Kalevala end moraine was also formed around 11 300 calendar years ago but the KIS remained active longer than the TIS. Both of these sub-ice streams terminated into a glacial lake that was part of a larger White Sea Basin ice lake.
The Nordic countries have experienced multiple glaciations and intervening interglacials during the last ca. 2.5-3 million years. Although evidence from Greenland and Iceland shows that ice sheets started to expand some time before 3 Ma, little is known about the glaciations and intervening interglacials older than the last Glacial Maximum due to repeated phases of glacial erosion and reworking. The extensive Saalian glaciation (c. 140 ka BP) contributed to high sea levels in Greenland and in the Baltic area during the early part of the last interglacial (Eemian). Temperatures were about 5 ºC higher during the Eemian than they are today and the Greenland ice sheet was reduced to about half of its present size, causing globally higher sea levels than we have today. Ice extent in Fennoscandia was restricted during early Weichselian stadials, but middle Weichselian ice advances in Scandinavia reached as far as Denmark. During the Last Glacial Maximum, large ice sheets were present in all Nordic countries and coalesced with neighboring ice sheets. Deglaciation commenced around 17-15 ka BP in most areas and was promoted by rapidly rising global sea level and glacial isostasy. The Younger Dryas cold event(c. 12.6-11.5 ka BP) is seen as a short-term re-advance, still-stand or fluctuation of land-based ice sheet margins. Around 7-9 ka BP ice sheets had disappeared or had attained their present size. While uplift is still going on in some regions, others are subject to submergence. The different stages of development of the Baltic Sea are an example of how the intricate interplay between glacial eustasy and isostasy influences sedimentation, basin size and drainage patterns.
The lithostratigraphy of pre‐Late Weichselian sediments and OSL‐dating results from four localities in the Suupohja area of western Finland, adjacent to the centre of the former Scandinavian glaciations, are presented. The studied sections expose glacifluvial, quiet‐water, littoral and aeolian deposits overlain by Middle and/or Late Weichselian tills. Litho‐ and biostratigraphical results together with seven OSL age determinations on buried glacifluvial sediment at Rävåsen (94±15 ka) and on till‐covered littoral and aeolian sediments at Risåsen, Rävåsen, Jätinmäki and Kiviharju (79±10 to 54±8 ka), accompanied by previous datings and interpretations, suggest that the glacifluvial sediments at Risåsen were deposited at the end of the Saalian Stage (MIS 6) and those at Risåsen were deposited possibly in the Early Weichselian Substage (MIS 5d?). Palaeosol horizons and ice‐wedge casts together with the dated littoral and aeolian sediments between the Harrinkangas Formation (Saalian) and the overlying till(s) indicate that western Finland was ice‐free during most of the Weichselian time. Littoral deposits, dated to the Middle Weichselian (MIS 4–3), occur at altitudes of 50–90 m a.s.l., which indicates significant glacio‐isostatic depression. The depression resulted from expansion of the ice sheet in the west of Finland at that time.
The isostatic adjustment of the solid Earth to the glacial loading (GIA, Glacial Isostatic Adjustment) with its temporal signature offers a great opportunity to retrieve information of Earth's upper mantle to the changing mass of glaciers and ice sheets, which in turn is driven by variations in Quaternary climate. DynaQlim (Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas) has its focus to study the relations between upper mantle dynamics, its composition and physical properties, temperature, rheology, and Quaternary climate. Its regional focus lies on the cratonic areas of northern Canada and Scandinavia.Geodetic methods like repeated precise levelling, tide gauges, high-resolution observations of recent movements, gravity change and monitoring of postglacial faults have given information on the GIA process for more than 100 years. They are accompanied by more recent techniques like GPS observations and the GRACE and GOCE satellite missions which provide additional global and regional constraints on the gravity field. Combining geodetic observations with seismological investigations, studies of the postglacial faults and continuum mechanical modelling of GIA, DynaQlim offers new insights into properties of the lithosphere. Another step toward a better understanding of GIA has been the joint inversion of different types of observational data -preferentially connected with geological relative sea-level evidence of the Earth's rebound during the last 10,000 years.Due to the changes in the lithospheric stress state large faults ruptured violently at the end of the last M. Poutanen ( ) Finnish Geodetic Institute, Geodeetinrinne 2, 02430 Masala, Finland e-mail: markku.poutanen@fgi.fi glaciation in large earthquakes, up to the magnitudes M W = 7-8. Whether the rebound stress is still able to trigger a significant fraction of intraplate seismic events in these regions is not completely understood due to the complexity and spatial heterogeneity of the regional stress field. Understanding of this mechanism is of societal importance.Glacial ice sheet dynamics are constrained by the coupled process of the deformation of the viscoelastic solid Earth, the ocean and climate variability. Exactly how the climate and oceans reorganize to sustain growth of ice sheets that ground to continents and shallow continental shelves is poorly understood. Incorporation of nonlinear feedback in modelling both ocean heat transport systems and atmospheric CO 2 is a major challenge. Climate-related loading cycles and episodes are expected to be important, hence also more shortterm features of palaeoclimate should be explicitly treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.