We present the design of a full waveform hyperspectral light detection and ranging (LiDAR) and the first demonstrations of its applications in remote sensing. The novel instrument produces a 3D point cloud with spectral backscattered reflectance data. This concept has a significant impact on remote sensing and other fields where target 3D detection and identification is crucial, such as civil engineering, cultural heritage, material processing, or geomorphological studies. As both the geometry and spectral information on the target are available from a single measurement, this technology will extend the scope of imaging spectroscopy into spectral 3D sensing. To demonstrate the potential of the instrument in the remote sensing of vegetation, 3D point clouds with backscattered reflectance and spectral indices are presented for a specimen of Norway spruce.
Precision agriculture requires detailed crop status information at high spatial and temporal resolutions. Remote sensing can provide such information, but single sensor observations are often incapable of meeting all data requirements. Spectral-temporal response surfaces (STRSs) provide continuous reflectance spectra at high temporal intervals. This is the first study to combine multispectral satellite imagery (from Formosat-2) with hyperspectral imagery acquired with an unmanned aerial vehicle (UAV) to construct STRS. This study presents a novel STRS methodology which uses Bayesian theory to impute missing spectral information in the multispectral imagery and introduces observation uncertainties into the interpolations. This new method is compared to two earlier published methods for constructing STRS: a direct interpolation of the original data and a direct interpolation along the temporal dimension after imputation along the spectral dimension. The STRS derived through all three methods are compared to field measured reflectance spectra, leaf area index (LAI), and canopy chlorophyll of potato plants. The results indicate that the proposed Bayesian approach has the highest correlation (r = 0.953) and lowest RMSE (0.032) to field spectral reflectance measurements. Although the optimized soil-adjusted vegetation index (OSAVI) obtained from all methods have similar correlations to field data, the modified chlorophyll absorption in reflectance index (MCARI) obtained from the Bayesian STRS outperform the other two methods. A correlation of 0.83 with LAI and 0.77 with canopy chlorophyll measurements are obtained, compared to correlations of 0.27 and 0.09, respectively, for the directly interpolated STRS.
During the last years commercial hyperspectral imaging sensors have been miniaturized and their performance has been demonstrated on Unmanned Aerial Vehicles (UAV). However currently the commercial hyperspectral systems still require minimum payload capacity of approximately 3 kg, forcing usage of rather large UAVs. In this article we present a lightweight hyperspectral mapping system (HYMSY) for rotor-based UAVs, the novel processing chain for the system, and its potential for agricultural mapping and monitoring applications. The HYMSY consists of a custom-made pushbroom spectrometer (400-950 nm, 9 nm FWHM, 25 lines/s, 328 px/line), a photogrammetric camera, and a miniature GPS-Inertial Navigation System. The weight of HYMSY in ready-to-fly configuration is only 2.0 kg and it has been constructed mostly from off-the-shelf components. The processing chain uses a photogrammetric algorithm to produce a Digital 11014Surface Model (DSM) and provides high accuracy orientation of the system over the DSM. The pushbroom data is georectified by projecting it onto the DSM with the support of photogrammetric orientations and the GPS-INS data. Since an up-to-date DSM is produced internally, no external data are required and the processing chain is capable to georectify pushbroom data fully automatically. The system has been adopted for several experimental flights related to agricultural and habitat monitoring applications. For a typical flight, an area of 2-10 ha was mapped, producing a RGB orthomosaic at 1-5 cm resolution, a DSM at 5-10 cm resolution, and a hyperspectral datacube at 10-50 cm resolution.
Grassland ecosystems cover around 40% of the entire Earth's surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partial least squares regression (PLSR) and narrow vegetation indices, for estimating the structural and biochemical grassland traits from UAV-acquired hyperspectral images. Moreover, the influence of fertilizers on plant traits for grasslands was analyzed. Hyperspectral data were collected from an experimental field at the farm Haus Riswick, near Kleve in Germany, for two different flight campaigns in May and October. The collected image blocks were geometrically and radiometrically corrected for surface reflectance. Spectral signatures extracted for the plots were adopted to derive grassland traits by computing PLSR and the following narrow vegetation indices: the MERIS Terrestrial Chlorophyll Index (MTCI), the ratio of the Modified Chlorophyll Absorption in Reflectance and Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI) modified by Wu, the Rededge Chlorophyll Index (CIred-edge), and the Normalized Difference Red Edge (NDRE). PLSR showed promising results for estimating grassland structural traits and gave less satisfying outcomes for the selected chemical traits (crude ash, crude fiber, crude protein, Na, K, metabolic energy). Established relations are not influenced by the type and the amount of fertilization, while they are affected by the grassland health status. PLSR is found to be the best strategy, among the approaches analyzed in this paper, for exploring structural and biochemical features of grasslands. Using UAV-based hyperspectral sensing allows for the highly detailed assessment of grassland experimental plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.