This article is concerned with measure equivalence and uniform measure equivalence of locally compact, second countable groups. We show that two unimodular, locally compact, second countable groups are measure equivalent if and only if they admit free, ergodic, probability measure preserving actions whose cross section equivalence relations are stably orbit equivalent. Using this we prove that in the presence of amenability any two such groups are measure equivalent and that both amenability and property (T) are preserved under measure equivalence, extending results of Connes-Feldman-Weiss and Furman. Furthermore, we introduce a notion of uniform measure equivalence for unimodular, locally compact, second countable groups, and prove that under the additional assumption of amenability this notion coincides with coarse equivalence, generalizing results of Shalom and Sauer. Throughout the article we rigorously treat measure theoretic issues arising in the setting of non-discrete groups.
We consider L p -cohomology of reflexive Banach spaces and give a spectral condition implying the vanishing of 1-cohomology with coefficients in uniformly bounded representations on a Hilbert space. (2000): 20F65
Mathematics Subject Classification
We undertake a comprehensive study of measure equivalence between general locally compact, second countable groups, providing operator algebraic and ergodic theoretic reformulations, and complete the classification of amenable groups within this class up to measure equivalence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.