Cisplatin (CP) is a well-known anticancer drug used to effectively treat various kinds of solid tumors. CP causes acute kidney injury (AKI) and unfortunately, there is no therapeutic approach in hand to prevent AKI. Several signaling pathways are responsible for inducing AKI which leads to inflammation in proximal convoluted tubule cells in the kidney. Furthermore, the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome is involved in the CP-induced AKI. In this study, we investigated therapeutic effects of rosmarinic acid (RA) against inflammation-induced AKI. RA was orally administered at the dose of 100 mg/kg for two consecutive days after 24 h of a single injection of CP at the dose of 20 mg/kg administered intraperitoneally in Swiss albino male mice. Treatment of RA inhibited the activation of NLRP3 signaling pathway by blocking the activated caspase-1 and downstream signal molecules such as IL-1β and IL18. CP activated HMGB1-TLR4/MyD88 axis was also found to be downregulated with the RA treatment. Activation of nuclear factor-κB and elevated protein expression of cyclooxygenase-2 (COX-2) were also found to be downregulated in RA-treated animals. Alteration of early tubular injury biomarker, kidney injury molecule-1 (KIM-1), was found to be subsided in RA-treated mice. RA has been earlier reported for antioxidant and anti-inflammatory properties. Our findings show that blocking a critical step of inflammasome signaling pathway by RA treatment can be a novel and beneficial approach to prevent the CP-induced AKI.
Inflammation is one of the mechanisms involved in the acute kidney injury (AKI) caused by cisplatin (CP)-induced nephrotoxicity. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) has powerful antioxidant activity. We investigated its potential nephroprotective effects and the underlying mechanisms that may add further benefits to its clinical usefulness in a CP-induced AKI model. Male Swiss albino mice were divided randomly into four groups: control, CP (20 mg/kg intraperitoneally), tempol (100 mg/kg/day, per os) + CP, and tempol only treatments. Blood samples were collected to analyze renal function parameters. Immunoblotting and immunohistochemical analysis were used to assess the level and localization of inflammatory markers. Tempol afforded protection to animals from CP-induced elevation of inflammatory markers as indicated by reduced expression of nuclear factor-kappa B, cyclooxygenase-2, and tumor necrosis factor-α in kidney tissue. Histological findings and analysis of kidney function markers corroborated with these findings confirming a nephroprotective role for tempol. In conclusion, this study provides important evidence for the promising anti-inflammatory effects of tempol which appears to contribute significantly to its nephroprotective action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.