Background Recent studies suggest that microRNAs (miRNAs) can participate in depression pathogenesis by altering a host of genes that are critical in corticolimbic functioning. The present study focuses on examining whether alterations in the miRNA network in the amygdala are associated with susceptibility or resiliency to develop depression-like behavior in rats. Methods Amygdala-specific altered miRNA transcriptomics were determined in a rat depression model following next-generation sequencing method. Target prediction analyses (cis- and trans) and qPCR-based assays were performed to decipher the functional role of altered miRNAs. miRNA-specific target interaction was determined using in vitro transfection assay in neuroblastoma cell line. miRNA-specific findings from the rat in vivo model were further replicated in postmortem amygdala of major depressive disorder (MDD) subjects. Results Changes in miRNome identified 17 significantly upregulated and 8 significantly downregulated miRNAs in amygdala of learned helpless (LH) compared with nonlearned helpless rats. Prediction analysis showed that the majority of the upregulated miRNAs had target genes enriched for the Wnt signaling pathway. Among altered miRNAs, upregulated miR-128-3p was identified as a top hit based on statistical significance and magnitude of change in LH rats. Target validation showed significant downregulation of Wnt signaling genes in amygdala of LH rats. A discernable increase in expression of amygdalar miR-128-3p along with significant downregulation of key target genes from Wnt signaling (WNT5B, DVL, and LEF1) was noted in MDD subjects. Overexpression of miR-128-3p in a cellular model lead to a marked decrease in the expression of Dvl1 and Lef1 genes, confirming them as validated targets of miR-128-3p. Additional evidence suggested that the amygdala-specific diminished expression of transcriptional repressor Snai1 could be potentially linked to induced miR-128-2 expression in LH rats. Furthermore, an amygdala-specific posttranscriptional switching mechanism could be active between miR-128-3p and RNA binding protein Arpp21 to gain control over their target genes such as Lef1. Conclusion Our study suggests that in amygdala a specific set of miRNAs may play an important role in depression susceptibility, which could potentially be mediated through Wnt signaling.
Testosterone is an anabolic androgenic steroid hormone involved in brain development, reproduction and social behavior. Several studies have shown that testosterone can cause impulsivity in humans, which in turn, is linked with mood related psychiatric disorders and higher risk of death by suicide. The mechanisms by which testosterone abuse influences impulsivity are unclear. The present study aims to understand how testosterone influences impulsivity in a rodent model both at behavioral and molecular levels. In this study, rats were either only gonadectomized or gonadectomized and injected with supraphysiological doses of testosterone. Their relative impulsivity levels were assessed using the go/no-go task. Serum level of testosterone was measured using ELISA. Transcript levels of alpha-2A adrenergic receptor (Adra2a), G proteins (stimulatory subunit-G αs [Gnas] inhibitory subunit-G iα [Gnai1 and Gnai]), and catalytic and regulatory subunits of protein kinase A (PKA) were examined using quantitative PCR (qPCR) in brain areas associated with limbic system (prefrontal cortex [PFC], hippocampus, and amygdala). The testosterone treated group showed significantly higher level of serum testosterone and displayed a lower go/no-go ratio, indicating greater impulsivity compared to the gonadectomized (GDX) group. The transcript levels Adra2a and G αs genes and PKA subunits encoded by Prkar1a, Prkar1b, Prkar2a, and Prkaca genes were significantly upregulated in PFC of testosterone treated rats. The expression levels of these genes were not significantly altered in hippocampus. On the other hand, amygdala showed changes only in Gnas and Prkar2a. These results suggest that chronic testosterone influences impulsivity possibly via hyperactive alpha-2A adrenergic receptor-PKA signaling axis, specifically in the PFC.
Testosterone can induce impulsivity, a behavioral impairment associated with various psychiatric illnesses. The molecular mechanisms associated with testosterone-induced impulsivity are unclear. Our earlier studies showed that supraphysiological doses of testosterone to rats induced impulsive behavior, impacted hypothalamic-pituitaryadrenal axis (HPA) and hypothalamic-pituitary-gonadal axis interactions, and altered α 2A adrenergic receptors in prefrontal cortex (PFC). Owing to the importance of GABAergic system in impulsivity and memory, the present study examines whether testosterone-mediated impulsivity is associated with changes in the expression of Gamma-Aminobutyric Acid (GABA) A and B receptor subunit transcripts (Gabra1,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.