Reprints and permissions information is available at www.nature.com/reprints. Data availability All sequencing data from this study have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) and are accessible through the GEO Series accession code GSE122713. All other relevant data are available from the corresponding author on request.
Inhibitory signals through the PD-1 pathway regulate T cell activation, T cell tolerance, and T cell exhaustion. Studies of PD-1 function have focused primarily on effector T cells. Far less is known about PD-1 function in regulatory T (T reg) cells. To study the role of PD-1 in T reg cells, we generated mice that selectively lack PD-1 in T reg cells. PD-1–deficient T reg cells exhibit an activated phenotype and enhanced immunosuppressive function. The in vivo significance of the potent suppressive capacity of PD-1–deficient T reg cells is illustrated by ameliorated experimental autoimmune encephalomyelitis (EAE) and protection from diabetes in nonobese diabetic (NOD) mice lacking PD-1 selectively in T reg cells. We identified reduced signaling through the PI3K–AKT pathway as a mechanism underlying the enhanced suppressive capacity of PD-1–deficient T reg cells. Our findings demonstrate that cell-intrinsic PD-1 restraint of T reg cells is a significant mechanism by which PD-1 inhibitory signals regulate T cell tolerance and autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.