We report a novel type of active fiber - tapered double clad fiber suitable for pumping by low brightness sources with large beam parameter product of 50/300 mm x mrad. Ytterbium double clad all-silica fiber (core/1(st) clad/2(nd) clad diameters 27/834/890 mum, NA(core)=0.11, NA(clad)=0.21), tapered down by a factor 4.8 for a length of 10.5 m was drawn from a preform fabricated by plasma chemical technologies. At a moderate Yb-ion concentration and 1:31 core/cladding ratio, the tapered double clad fiber demonstrates 0.9 dB/m pump absorption at 976 nm and excellent lasing slope efficiency. An ytterbium fiber laser with 84 W of output power and 92% slope efficiency, a 74 W superfluorescent source with 85% slope efficiency and amplifiers operating both in CW and pulsed regimes have been realized. All devices demonstrated robust single mode operation with a beam quality factor of M(2)=1.07.
The results of theoretical and experimental studies of active tapered double-clad fibers, intending the optimization of its imperative parameters--tapering ratio, longitudinal profile, core/cladding diameters ratio, are presented. Using a refined taper geometry we have demonstrated power scaling of a ytterbium fiber laser pumped by low-brightness, cost-effective laser diodes up to 750 W, with 80% efficiency.
Pump propagation and absorption in active tapered double-clad fiber has been analyzed based on a ray optics approach. Optimization of the longitudinal shape, absorption and angular distribution of the pump beam allowed for power scaling of a ytterbium fiber laser up to 600 W with high beam quality (M2
With a tapered double-clad all-glass ytterbium fiber as a gain medium, a maximum output power of over 200 W at 1079 nm and a slope efficiency of over 70% were demonstrated. The tapered double-clad fiber concept allows for using low-brightness diode bars and results in cost-effective and efficient high-power fiber lasers. The adiabatic conical fiber gain waveguide combines improved pump absorption owing to enhanced mode mixing in the pump cladding, low-noise single fundamental mode operation with M(2)< or =1.02, and strong potential for significant power scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.