Bearing is one of the most important parts of rotating machinery with high failure rate, and its working state directly affects the performance of the entire equipment. Hence, it is of great significance to diagnose bearing faults, which can contribute to guaranteeing running stability and maintenance, thus promoting production efficiency and economic benefits. Usually, the bearing fault features are difficult to extract effectively, which results in low diagnosis performance. To solve the problem, this paper proposes a bearing fault feature extraction method and it establishes a bearing fault diagnosis method that is based on feature fusion. The basic idea of the method is as follows: firstly, the time-frequency feature of the bearing signal is extracted through Wavelet Packet Transform (WPT) to form the time-frequency characteristic matrix of the signal; secondly, the Multi-Weight Singular Value Decomposition (MWSVD) is constructed by singular value contribution rate and entropy weight. The features of the time-frequency feature matrix obtained by WPT are further extracted, and the features that are sensitive to fault in the time-frequency feature matrix are retained while the insensitive features are removed; finally, the extracted feature matrix is used as the input of the Support Vector Machine (SVM) classifier for bearing fault diagnosis. The proposed method is validated by data sets from the time-varying bearing data from the University of Ottawa and Case Western Reserve University Bearing Data Center. The results show that the algorithm can effectively diagnose the bearing under the steady-state and unsteady state. This paper proposes that the algorithm has better fault diagnosis capabilities and feature extraction capabilities when compared with methods that aree based on traditional feature technology.
Aiming at the problem of fault diagnosis in continuous time systems, a kind of fault diagnosis algorithm based on adaptive nonlinear proportional integral (PI) observer, which can realize the effective fault identification, is studied in this paper. Firstly, the stability and stability conditions of fault diagnosis method based on the PI observer are analyzed, and the upper bound of the fault estimation error is given. Secondly, the fault diagnosis algorithm based on adjustable nonlinear PI observer is designed and constructed, it is analyzed and we proved that the upper bound of fault estimation under this algorithm is better than that of the traditional method. Finally, the L-1011 unmanned aerial vehicle (UAV) is taken as the experimental object for numerical simulation, and the fault diagnosis method based on adaptive observer factor achieves faster response speed and more accurate fault identification results.
Weak fault signals, high coupling data, and unknown faults commonly exist in fault diagnosis systems, causing low detection and identification performance of fault diagnosis methods based on T2 statistics or cross entropy. This paper proposes a new fault diagnosis method based on optimal bandwidth kernel density estimation (KDE) and Jensen–Shannon (JS) divergence distribution for improved fault detection performance. KDE addresses weak signal and coupling fault detection, and JS divergence addresses unknown fault detection. Firstly, the formula and algorithm of the optimal bandwidth of multidimensional KDE are presented, and the convergence of the algorithm is proved. Secondly, the difference in JS divergence between the data is obtained based on the optimal KDE and used for fault detection. Finally, the fault diagnosis experiment based on the bearing data from Case Western Reserve University Bearing Data Center is conducted. The results show that for known faults, the proposed method has 10% and 2% higher detection rate than T2 statistics and the cross entropy method, respectively. For unknown faults, T2statistics cannot effectively detect faults, and the proposed method has approximately 15% higher detection rate than the cross entropy method. Thus, the proposed method can effectively improve the fault detection rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.