This study outlines the preliminary stages of the development of an algorithm to predict the optimal WQ of the Hwanggujicheon Stream. In the first stages, we used the AdaBoost algorithm model to predict the state of WQ, using data from the open artificial intelligence (AI) hub. The AdaBoost algorithm has excellent predictive performance and model suitability and was selected for random forest and gradient boosting (GB)-based boosting models. To predict the optimized WQ, we selected pH, SS, water temperature, total nitrogen(TN), dissolved total phosphorus(DTP), NH₃-N, chemical oxygen demand (COD), dissolved total nitrogen (DTN), and NO₃-N as the input variables of the AdaBoost model. Dissolved oxygen (DO) was used as the target variable. Third, an algorithm showing excellent predictive power was selected by analyzing the prediction accuracy according to the input variable by using the random forest or GB series algorithm in the initial model. Finally, the performance evaluation of the ultimately developed predictive model demonstrated that RMS was 0.015, MAE was 0.009, and R2 was 0.912. The coefficient of the variation of the root mean square error (CVRMSE) was 17.404. R2 0.912 and CVRMSE were 17.404, indicating that the predictive model developed meets the criteria of ASHRAE Guideline 14. It is imperative that government and administrative agencies have access to effective tools to assess WQ and pollution levels in their local bodies of water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.