Silicon oxides (SiOx) have attracted recent attention for their great potential as promising anode materials for lithium ion batteries as a result of their high energy density and excellent cycle performance. Despite these advantages, the commercial use of these materials is still impeded by low initial Coulombic efficiency and high production cost associated with a complicated synthesis process. Here, we demonstrate that Si/SiOx nanosphere anode materials show much improved performance enabled by electroconductive black TiO(2-x) coating in terms of reversible capacity, Coulombic efficiency, and thermal reliability. The resulting anode material exhibits a high reversible capacity of 1200 mAh g(-1) with an excellent cycle performance of up to 100 cycles. The introduction of a TiO(2-x) layer induces further reduction of the Si species in the SiOx matrix phase, thereby increasing the reversible capacity and initial Coulombic efficiency. Besides the improved electrochemical performance, the TiO(2-x) coating layer plays a key role in improving the thermal reliability of the Si/SiOx nanosphere anode material at the same time. We believe that this multipurpose interfacial engineering approach provides another route toward high-performance Si-based anode materials on a commercial scale.
Silicon (Si) based materials are highly desirable to replace currently used graphite anode for lithium ion batteries. Nevertheless, its usage is still a big challenge due to poor battery performance and scale-up issue. In addition, two-dimensional (2D) architectures, which remain unresolved so far, would give them more interesting and unexpected properties. Herein, we report a facile, cost-effective, and scalable approach to synthesize Si nanocrystals embedded 2D SiOx nanofoils for next-generation lithium ion batteries through a solution-evaporation-induced interfacial sol-gel reaction of hydrogen silsesquioxane (HSiO1.5, HSQ). The unique nature of the thus-prepared centimeter scale 2D nanofoil with a large surface area enables ultrafast Li+ insertion and extraction, with a reversible capacity of more than 650 mAh g−1, even at a high current density of 50 C (50 A g−1). Moreover, the 2D nanostructured Si/SiOx nanofoils show excellent cycling performance up to 200 cycles and maintain their initial dimensional stability. This superior performance stems from the peculiar nanoarchitecture of 2D Si/SiOx nanofoils, which provides short diffusion paths for lithium ions and abundant free space to effectively accommodate the huge volume changes of Si during cycling.
A swelling-suppressed, Si nanocrystals-embedded SiOx nanospheres lithium storage material was prepared by graphene envelopment. The free void spaces formed between the graphene envelope and Si/SiOx nanospheres effectively accommodated the volume changes of Si/SiOx nanospheres during cycling, which significantly suppresses the swelling behavior and improves the capacity retention up to 200 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.