Anthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics. In seagrass beds associated with volcanic CO 2 vents (Ischia, Italy), we quantified the effects of OA on seagrass decomposition by deploying litterbags in three distinct pH zones (i.e., ambient, low, extreme low pH), which differed in the mean and variability of seawater pH. We replicated the study in two discrete vents for 117 days (litterbags sampled on day 5, 10, 28, 55, and 117). Acidification reduced seagrass detritivore richness and diversity through the loss of less abundant, pH-sensitive species but increased the abundance of the dominant detritivore (amphipod Gammarella fucicola). Such compensatory shifts in species abundance caused more than a threefold increase in the total detritivore abundance in lower pH zones.These community changes were associated with increased consumption (52%-112%) and decay of seagrass detritus (up to 67% faster decomposition rate for the slowdecaying, refractory detrital pool) under acidification. Seagrass detritus deployed in acidified zones showed increased N content and decreased C:N ratio, indicating that altered microbial activities under OA may have affected the decay process. The findings suggest that OA could restructure consumer assemblages and modify plant decomposition in blue carbon ecosystems, which may have important implications for carbon sequestration, nutrient recycling, and trophic transfer. Our study highlights the importance of within-community response variability and compensatory processes in modulating ecosystem functions under extreme global change scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.