Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) is an endothelial cell-specific mitogen that is structurally related to platelet-derived growth factor (PDGF). Vascular endothelial growth factor/vascular permeability factor induces angiogenesis in vivo and may play a critical role in tumor angiogenesis. Using immunohistochemical analysis, the authors demonstrated the presence of VEGF/VPF protein in surgical specimens of glioblastoma multiforme and cultured glioma cells. By means of an enzyme-linked immunosorbent assay (ELISA) of cell supernatants, the authors showed that VEGF/VPF is variably secreted by all nine cultured human malignant glioma cell lines (CH-235MG, D-37MG, D-54MG, D-65MG, U-87MG, U-105MG, U-138MG, U-251MG, U-373MG) and by a single meningioma cell line (CH-157MN). An immunocytochemical survey of these cell lines revealed a cytoplasmic and cell-surface distribution of VEGF/VPF. In the U-105MG glioma cell line, VEGF/VPF secretion was induced with physiological concentrations of epidermal growth factor, PDGF-BB, or basic fibroblast growth factor, but not with PDGF-AA. Moreover, it was observed that activation of convergent growth factor signaling pathways led to increased glioma VEGF secretion. Similar results were obtained using these growth factor combinations in the D-54MG glioma cell line. The data obtained suggest a potential role for VEGF/VPF in tumor hypervascularity and peritumoral edema. These observations may lead to development of new therapeutic strategies.
These data suggest that meningioma-associated edema may be a result of the capacity of meningioma cells to produce VPF/VEGF locally, leading to increased tumor neovascularization and enhanced vascular permeability.
A total of 71 fusidic acid-resistant Staphylococcus aureus (45 methicillin-resistant and 26 methicillin-susceptible) isolates were examined for the presence of resistance determinants. Among 45 fusidic acid-resistant methicillin-resistant S. aureus (MRSA), isolates, 38 (84%) had fusA mutations conferring high-level resistance to fusidic acid (the MIC was >128 g/ml for 22/38), none had fusB, and 7 (16%) had fusC. For 26 fusidic acid-resistant methicillin-susceptible S. aureus (MSSA), only 3 possessed fusA mutations, but 15 (58%) had fusB and 8 (31%) had fusC. Low-level resistance to fusidic acid (MICs < 32 g/ml) was found in most fusB-or fusC-positive isolates. For 41 isolates (38 MRSA and 3 MSSA), with fusA mutations, a total of 21 amino acid substitutions in EF-G (fusA gene) were detected, of which R76C, E444K, E444V, C473S, P478S, and M651I were identified for the first time. The nucleotide sequencing of fusB and flanking regions in an MSSA isolate revealed the structure of partial IS257-aj1-LP-fusB-aj2-aj3-IS257-partial blaZ, which is identical to the corresponding region in pUB101, and the rest of fusB-carrying MSSA isolates also show similar structures. On the basis of spa and staphylococcal cassette chromosome mec element (SCCmec) typing, two major genotypes, spa type t037-SCCmec type III (t037-III; 28/45; 62%) and t002-II (13/45; 29%), were predominant among 45 MRSA isolates. By pulsed-field gel electrophoresis analysis, 45 MRSA isolates were divided into 12 clusters, while 26 MSSA isolates were divided into 15 clusters. Taken together, the distribution of fusidic acid resistance determinants (fusA mutations, fusB, and fusC) was quite different between MRSA and MSSA groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.